Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Synthesis of a Si-Al gel as a starting material of aluminosilicate solids

Sato, Junya; Shiota, Kenji*; Takaoka, Masaki*

Zairyo, 70(5), p.406 - 411, 2021/05

An aluminosilicate solid is an inorganic material that has the property of immobilizing heavy metals or radionuclides in the matrix. In this study, aluminosilicates with a Si/Al molar ratio of 0.5 was synthesized from a chemical reagent in order to produce aluminosilicate solids with a low Si/Al molar ratio, which were expected to improve the immobilization of heavy metals and radionuclides contained in the matrix. The synthesized Si-Al gel with a Si/Al molar ratio of 0.5 had little impurity content and was in an amorphous phase. In addition, the compressive strength of the aluminosilicate solid produced by the synthesized Si-Al gel showed a 5 MPa or more, confirming that it can be used as a raw material for aluminosilicate solids. The aluminosilicate solid with a Si/Al molar ratio of 1.25 had a dense surface structure from the result of BSE images and had the highest compressive strength among all samples.

Journal Articles

Stabilization of lead with amorphous solids synthesized from aluminosilicate gel

Sato, Junya; Shiota, Kenji*; Takaoka, Masaki*

Journal of Hazardous Materials, 385, p.121109_1 - 121109_9, 2020/03

 Times Cited Count:4 Percentile:62.5(Engineering, Environmental)

Lead is a hazardous heavy metal that can be stabilized by incorporation into the matrix of aluminosilicate bearing phases as they solidify. The actual mechanism by which lead is stabilized, however, continues to be unclear because the individual mechanisms of Pb incorporation into crystalline and amorphous aluminosilicate phases have not yet been studied separately. A detailed investigation of the incorporation of Pb into the amorphous phase of aluminosilicate solids was therefore performed. Amorphous aluminosilicate solids were synthesized with 0.7, 1.5, and 3.7 wt% of Pb from aluminosilicate gel produced from chemical reagents. Based on Raman spectroscopy, the Si-O stretching vibration bond shifted to lower wavenumbers with increasing Pb concentration. This shift suggested that covalent bonding between Pb and O in the matrix of the aluminosilicate solids increased. In addition, sequential extraction revealed that most of the Pb (75-90%) in the aluminosilicate solids was in a poorly soluble form (i.e. reducible, oxidizable, and residual fractions). These findings indicate that most of Pb is bonded covalently to the amorphous phase in aluminosilicate solids.

Oral presentation

Evaluation of chemical form of heavy metals in geopolymer matrix by sequential extraction method

Sato, Junya; Irisawa, Keita; Takaoka, Masaki*; Nakazawa, Osamu

no journal, , 

no abstracts in English

Oral presentation

Development of amorphous silica-alumina powder as starting material of aluminosilicate solids for stabilization of heavy metals

Sato, Junya; Irisawa, Keita; Nakazawa, Osamu; Takaoka, Masaki*

no journal, , 

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1