Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Narukawa, Takafumi*; Takata, Takashi*; Zheng, X.; Tamaki, Hitoshi; Shibamoto, Yasuteru; Maruyama, Yu; Takada, Tsuyoshi
Proceedings of Probabilistic Safety Assessment and Management & Asian Symposium on Risk Assessment and Management (PSAM17 & ASRAM2024) (Internet), 9 Pages, 2024/10
Zheng, X.; Tamaki, Hitoshi; Shibamoto, Yasuteru; Maruyama, Yu; Takada, Tsuyoshi; Narukawa, Takafumi*; Takata, Takashi*
Proceedings of Probabilistic Safety Assessment and Management & Asian Symposium on Risk Assessment and Management (PSAM17 & ASRAM2024) (Internet), 10 Pages, 2024/10
Arima-Osonoi, Hiroshi*; Takata, Shinichi; Kasai, Satoshi*; Ouchi, Keiichi*; Morikawa, Toshiaki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Iwase, Hiroki*; Hiroi, Kosuke; et al.
Journal of Applied Crystallography, 56(6), p.1802 - 1812, 2023/12
Times Cited Count:6 Percentile:81.06(Chemistry, Multidisciplinary)Uchibori, Akihiro; Doda, Norihiro; Aoyagi, Mitsuhiro; Sonehara, Masateru; Sogabe, Joji; Okano, Yasushi; Takata, Takashi*; Tanaka, Masaaki; Enuma, Yasuhiro; Wakai, Takashi; et al.
Nuclear Engineering and Design, 413, p.112492_1 - 112492_10, 2023/11
Times Cited Count:2 Percentile:43.92(Nuclear Science & Technology)The ARKAIDA has been developed to realize automatic optimization of plant design from safety evaluation for the advanced reactors represented by a sodium-cooled fast reactor. ARKADIA-Design offers functions to support design optimization both in normal operating conditions and design basis events. The multi-level simulation approach by the coupled analysis such as neutronics, core deformation, core thermal hydraulics was developed as one of the main technologies. On the other hand, ARKAIDA-Safety aims for safety evaluation considering severe accidents. As a key technology, the numerical methods for in- and ex-vessel coupled phenomena during severe accidents in sodium-cooled fast reactors were tested through a hypothetical severe accident event. Improvement of the ex-vessel model and development of the AI technology to find best design solution have been started.
Kubo, Kotaro; Zheng, X.; Tanaka, Yoichi; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Proceedings of the Institution of Mechanical Engineers, Part O; Journal of Risk and Reliability, 237(5), p.947 - 957, 2023/10
Times Cited Count:5 Percentile:53.83(Engineering, Multidisciplinary)Probabilistic risk assessment (PRA) is a method used to assess the risks associated with large and complex systems. However, the timing at which nuclear power plant structures, systems, and components are damaged is difficult to estimate if the risk of an external event is evaluated using conventional PRA based on event trees and fault trees. A methodology coupling thermal-hydraulic analysis with external event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID) is therefore proposed to overcome this limitation. A flood propagation model based on Bernoulli's theorem was applied to represent internal flooding in the turbine building of the pressurized water reactor. Uncertainties were also taken into account, including the flow rate of the floodwater source and the failure criteria for the mitigation systems. The simulated recovery actions included the operator isolating the floodwater source and using a drainage pump; these actions were modeled using several simplifications. Overall, the results indicate that combining isolation and drainage can reduce the conditional core damage probability upon the occurrence of flooding by approximately 90%.
Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Nuclear Engineering and Design, 411, p.112443_1 - 112443_12, 2023/09
Times Cited Count:1 Percentile:23.64(Nuclear Science & Technology)Li, C.-Y.; Wang, K.*; Uchibori, Akihiro; Okano, Yasushi; Pellegrini, M.*; Erkan, N.*; Takata, Takashi*; Okamoto, Koji*
Applied Sciences (Internet), 13(13), p.7705_1 - 7705_29, 2023/07
Times Cited Count:2 Percentile:36.16(Chemistry, Multidisciplinary)Louie, D. L. Y.*; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Luxat, D. L.*
Nuclear Engineering and Design, 407, p.112285_1 - 112285_5, 2023/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Ohshima, Hiroyuki; Asayama, Tai; Furukawa, Tomohiro; Tanaka, Masaaki; Uchibori, Akihiro; Takata, Takashi; Seki, Akiyuki; Enuma, Yasuhiro
Journal of Nuclear Engineering and Radiation Science, 9(2), p.025001_1 - 025001_12, 2023/04
This paper describes the outline and development plan for ARKADIA to transform advanced nuclear reactor design to meet expectations of a safe, economic, and sustainable carbon-free energy source. ARKADIA will realize Artificial Intelligence (AI)-aided integrated numerical analysis to offer the best possible solutions for the design and operation of a nuclear plant, including optimization of safety equipment. State-of-the-art numerical simulation technologies and a knowledge base that stores data and insights from past nuclear reactor development projects and R&D are integrated with AI. In the first phase of development, ARKADIA-Design and ARKADIA-Safety will be constructed individually, with the first target of sodium-cooled reactor. In a subsequent phase, everything will be integrated into a single entity applicable not only to advanced rectors with a variety of concepts, coolants, configurations, and output levels but also to existing light-water reactors.
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 60(4), p.359 - 373, 2023/04
Times Cited Count:10 Percentile:81.25(Nuclear Science & Technology)Probabilistic risk assessment (PRA) is an essential approach to improving the safety of nuclear power plants. However, this method includes certain difficulties, such as modeling of combinations of multiple hazards. Seismic-induced flooding scenario includes several core damage sequences, i.e., core damage caused by earthquake, flooding, and combination of earthquake and flooding. The flooding fragility is time-dependent as the flooding water propagates from the water source such as a tank to compartments. Therefore, dynamic PRA should be used to perform a realistic risk analysis and quantification. This study analyzed the risk of seismic-induced flooding events by coupling seismic, flooding, and thermal-hydraulics simulations, considering the dependency between multiple hazards explicitly. For requirements of safety improvement, especially in light of the Fukushima Daiichi Nuclear Power Plant accident, sensitivity analysis was performed on the seismic capacity of systems, and the effectiveness of alternative steam generator injection by a portable pump was estimated. We demonstrate the use of this simulation-based dynamic PRA methodology to evaluate the risk induced by a combination of hazards.
Ono, Masahiro*; Uchibori, Akihiro; Okano, Yasushi; Takata, Takashi*
JAEA-Testing 2022-004, 193 Pages, 2023/03
A computer code TRACER (Transport phenomena of Radionuclides for Accident Consequence Evaluation of Reactor) version 2.4.1 has been developed to evaluate species and quantities of fission products (FPs) released into cover gas due to a fuel pin failure in an LMFBR. The TRACER version 2.4.1 includes the models related to NUREG-0772 and also new or modified computational program codes in order to possess a new function shown below, and partial modify of coefficient of FP transition model between coolant and cover gas. This manual includes manual conventions for TRACER Version 2.3, addition of reference such as formula, improvement of explanation of input file creation method, addition of improvement of NUREG-0772 model added to TRACER code, modification of figure of sample analysis performed in appendix. It includes modifications and additions of sample analysis.
Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Proceedings of Asian Symposium on Risk Assessment and Management 2022 (ASRAM 2022) (Internet), 11 Pages, 2022/12
Uchibori, Akihiro; Sogabe, Joji; Okano, Yasushi; Takata, Takashi*; Doda, Norihiro; Tanaka, Masaaki; Enuma, Yasuhiro; Wakai, Takashi; Asayama, Tai; Ohshima, Hiroyuki
Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 10 Pages, 2022/09
The ARKAIDA has been developed to realize automatic optimization of plant design from safety evaluation for the advanced reactors represented by a sodium-cooled fast reactor. ARKADIA-Design offers functions to support design optimization both in normal operating conditions and design basis events. The multi-level simulation approach by the coupled analysis such as neutronics, core deformation, core thermal hydraulics was developed as one of the main technologies of the ARKADIA-Design. On the other hand, ARKAIDA-Safety aims for safety evaluation considering severe accidents. As a key technology, the numerical methods for in- and ex-vessel coupled phenomena during severe accidents in sodium-cooled fast reactors were tested through a hypothetical severe accident event.
Aoyagi, Mitsuhiro; Sonehara, Masateru; Ishida, Shinya; Uchibori, Akihiro; Kawada, Kenichi; Okano, Yasushi; Takata, Takashi
Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 3 Pages, 2022/09
Louie, D. L. Y.*; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Luxat, D. L.*
Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 6 Pages, 2022/09
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Uchibori, Akihiro; Sonehara, Masateru; Aoyagi, Mitsuhiro; Takata, Takashi*; Ohshima, Hiroyuki
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 9 Pages, 2022/04
A new computational code, SPECTRA, has been developed for integrated analysis of in- and ex-vessel phenomena during severe accidents in sodium-cooled fast reactors. The in-vessel thermal hydraulics module includes coupled analytical models for multidimensional multifluid model considering compressibility and relocation of a molten core. A lumped mass model is employed for computing behavior of ex-vessel compressible multicomponent gas including aerosols. This model is coupled with the models for ex-vessel phenomena such as sodium fire. Loss of reactor level event starting from leakage of sodium coolant was computed. Basic capability to evaluate severe accident progress was demonstrated through this analysis.
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 59(3), p.357 - 367, 2022/03
Times Cited Count:7 Percentile:61.36(Nuclear Science & Technology)Dynamic probabilistic risk assessment (PRA), which handles epistemic and aleatory uncertainties by coupling the thermal-hydraulics simulation and probabilistic sampling, enables a more realistic and detailed analysis than conventional PRA. However, enormous calculation costs are incurred by these improvements. One solution is to select an appropriate sampling method. In this paper, we applied the Monte Carlo, Latin hypercube, grid-point, and quasi-Monte Carlo sampling methods to the dynamic PRA of a station blackout sequence in a boiling water reactor and compared each method. The result indicated that quasi-Monte Carlo sampling method handles the uncertainties most effectively in the assumed scenario.
Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 12 Pages, 2022/03
An unstructured mesh-based analysis method has been integrated into the sodium-water reaction analysis code, SERAPHIM, in our recent studies. In this study, numerical analysis of an experiment on sodium-water reaction in a tube bundle domain was performed to investigate the effect of the unstructured mesh. The unrealistic behavior appeared in the coarse structured mesh was improved by the unstructured mesh. The numerical result in the case of the unstructured mesh reproduced the peak value of the temperature in the reacting flow.
Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03