Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Tachihara, Joji; Takato, Kiyoto; Okita, Takatoshi; Satone, Hiroshi*; Suzuki, Michitaka*
Mechanical Engineering Journal (Internet), 8(3), p.21-00022_1 - 21-00022_9, 2021/06
To reduce the hold-up of the nuclear fuel materials in the glove box and the external exposure dose, the technology of the MOX powder adhesion prevention by the nanoparticle coating to the acrylic panels of the glove box has been developed. The surface analysis by means of atomic force microscopy (AFM) showed that the acrylic test piece surface coated with nanoparticles had a higher root mean square roughness value than that non-coated with nanoparticles. Due to the formation of nano-sized tiny rugged surface, the nanoparticle coating reduced the minimum adhesion force between the UO particles and the acrylic test piece surface with the smallest particle size of about 5
m where desorption was observed, by about one-tenth. Moreover, the nanoparticle coating reduced the amount of the MOX powder adhering to the acrylic test piece to about one-tenth. In this study, it was found that applying the nanoparticle coating to the acrylic panels of glove box can prevent the adhesion of nuclear fuel materials. This method is effective for reducing the hold-up of the nuclear fuel materials in the glove box, the external exposure dose and improving the visibility of the acrylic panels.
Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Tachihara, Joji; Takato, Kiyoto; Okita, Takatoshi; Satone, Hiroshi*; Suzuki, Michitaka*
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08
To reduce the hold-up of the nuclear fuel materials in the glove box and the external exposure dose, the technology of the MOX powder adhesion prevention by the nanoparticle coating to the acrylic panels of the glove box has been developed. Due to the formation of nano-sized tiny rugged surface, the nanoparticle coating reduced the minimum adhesion force between the UO particles and the acrylic test piece surface with the smallest particle size of about 5
m where desorption was observed, by about one-tenth. Moreover, the nanoparticle coating reduced the amount of the MOX powder adhering to the acrylic test piece to about one-tenth. In this study, it was found that applying the nanoparticle coating to the acrylic panels of glove box can prevent the adhesion of nuclear fuel materials. This method is effective for reducing the hold-up of the nuclear fuel materials in the glove box, the external exposure dose and improving the visibility of the acrylic panels.
Takato, Kiyoto; Murakami, Tatsutoshi; Suzuki, Kiichi; Shibanuma, Kimikazu; Hatanaka, Nobuhiro; Yamaguchi, Bungo; Tobita, Yoshimasa; Shinozaki, Masaru; Iimura, Naoto; Okita, Takatoshi; et al.
JAEA-Technology 2013-026, 42 Pages, 2013/10
In order to cope with making a commercial fast reactor fuel burn-up higher, oxygen-to-metal (O/M) ratio in the fuel specification is designed to 1.95. As the test for the fabrication of such low O/M ratio pellets, two kinds of O/M ratio preparation tests of different reduction mechanism were done. In the first test, we evaluated the technology to prepare the O/M ratio low by annealing the sintered pellets in production scale. In addition, we know from past experience that O/M ratio of the sintered pellets can be reduced by residual carbon when the de-waxed pellets with high carbon content are sintered. Thus, in another test, the green pellets containing a large amount of organic additives were sintered and we evaluated the technology to produce the low O/M ratio sintered pellets by the reduction due to residual carbon. From the first test results, we found a tendency that the higher annealing temperature or the longer annealing time resulted in the lower O/M ratio. However, the amount of O/M ratio reduction was small and it is estimated that a substantial annealing time is necessary to prepare the O/M ratio to 1.95. It is considered that reducing O/M ratio by annealing was difficult because atmosphere gas containing oxygen released from pellets remained and the O/M ratio was changed to the value equilibrated with the gas having high oxygen potential. From another test results, it was confirmed that O/M ratio was reduced by the reduction due to residual carbon. We found that it was important to manage an oxygen potential of atmosphere gas in a sintering furnace low to reduce the O/M ratio effectively.
Takato, Kiyoto; Suzuki, Kiichi; Iimura, Naoto; Okita, Takatoshi
no journal, ,
no abstracts in English
Nishina, Masahiro; Takato, Kiyoto; Nakamichi, Shinya; Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Makino, Takayoshi; Okumura, Kazuyuki
no journal, ,
no abstracts in English
Takato, Kiyoto
no journal, ,
no abstracts in English
Takato, Kiyoto; Nishina, Masahiro; Tsuchimochi, Ryota; Hayashizaki, Kohei; Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Makino, Takayoshi; Okumura, Kazuyuki
no journal, ,
no abstracts in English
Takato, Kiyoto; Goto, Kenta; Yamamoto, Kazuya; Ichige, Hidekazu; Hatanaka, Nobuhiro; Murakami, Tatsutoshi
no journal, ,
no abstracts in English
Murakami, Tatsutoshi; Shibanuma, Kimikazu; Yamaguchi, Bungo; Takato, Kiyoto; Suzuki, Kiichi; Aono, Shigenori
no journal, ,
no abstracts in English
Goto, Kenta; Takato, Kiyoto; Ono, Takanori; Ichige, Hidekazu; Hatanaka, Nobuhiro; Murakami, Tatsutoshi
no journal, ,
no abstracts in English
Takato, Kiyoto; Shibanuma, Kimikazu; Suzuki, Kiichi; Murakami, Tatsutoshi; Aono, Shigenori
no journal, ,
no abstracts in English
Takato, Kiyoto
no journal, ,
no abstracts in English