Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 204

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a surrogate system of a plant dynamics simulation model and an abnormal situation identification system for nuclear power plants using deep neural networks

Seki, Akiyuki; Yoshikawa, Masanori; Nishinomiya, Ryota*; Okita, Shoichiro; Takaya, Shigeru; Yan, X.

Nuclear Technology, 12 Pages, 2024/00

Two types of deep neural network (DNN) systems have been constructed with the intent to assist safety operation of a nuclear power plant. One is a surrogate system (SS) that can estimate physical quantities of a nuclear power plant in a computational time of several orders less than a physical simulation model. The other is an abnormal situation identification system (ASIS) that can estimate the state of the disturbance causing an anomaly from physical quantities of a nuclear power plant. Both systems are trained and tested using data obtained from the analytical code for incore and plant dynamics (ACCORD), which reproduces the steady and dynamic behavior of the actual high Temperature engineering test reactor (HTTR) under various scenarios. The DNN models are built by adjusting, the main hyperparameters. Through these procedures, these systems are shown able to perform with a high degree of accuracy.

Journal Articles

JSME Series in Thermal and Nuclear Power Generation Vol. 3; Development of codes and standards considering condition in Sodium-cooled Fast Reactor

Okajima, Satoshi; Takaya, Shigeru; Wakai, Takashi; Asayama, Tai

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 3 Pages, 2023/09

no abstracts in English

Journal Articles

Comparison between fracture mechanics evaluation methods in ASME Boiler & Pressure Vessel Code, section XI and those in JSME leak-before-break evaluation guidelines for sodium-cooled fast reactors

Yada, Hiroki; Takaya, Shigeru; Machida, Hideo*

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 8 Pages, 2023/09

ASME Boiler and Pressure Vessel code (BPVC), Section XI, Division 2 provides requirements for protecting passive components that affect reliability of the plant. It generally consists of technology-neutral common requirements, and additional ones for individual reactor types. Currently, an Appendix for sodium-cooled fast reactors (SFRs) is being developed based on Code Case N-875. In the Code Case, continuous leakage monitoring was employed as inspection method for components retaining liquid sodium. It is also important to introduce leak-before-break (LBB) assessment procedures in the Appendix because demonstration of LBB is necessary to show the adequacy of applying continuous leakage monitoring to the component of interest. However, LBB assessment method is not provided in ASME BPVCs. On the other hand, recently, LBB assessment guidelines for SFRs has been developed by the Japan Society of Mechanical Engineers (JSME). It could be used to prepare LBB assessment procedures for the Appendix, but it needs to confirm the consistency with ASME BPVC Sec. XI. In this study, fracture evaluation methods for pipes with through-wall crack are compared between JSME LBB assessment guidelines and applicable evaluation method in ASME BPVC Sec. XI, Div. 1.

Journal Articles

Proposal for maintenance optimization scheme based on system based code concept

Yada, Hiroki; Takaya, Shigeru; Morohoshi, Kyoichi*; Yokoi, Shinobu*; Miyagawa, Takayuki*

Mechanical Engineering Journal (Internet), 10(4), p.23-00044_1 - 23-00044_13, 2023/08

To develop rationalized maintenance plans for nuclear power plants, the characteristics of each plant must be considered. For sodium-cooled fast reactor (SFR) plants, constraints on inspections exist due to the specialty that equipment retaining sodium must be handled, which is one of the important points that must be considered in maintenance rationalization. In this study, we propose a maintenance optimization scheme, which is a design support tool, using risk information to develop a maintenance strategy based on the system based code (SBC) concept. The SBC concept intends to provide a theoretical procedure to optimize the reliability of structure, system and components (SSCs) by administrating every related engineering requirements throughout the life of the SSCs from design to decommissioning. ASME Boiler and Pressure Vessel Code, Code Case, N-875 was developed based on the SBC concept. The purpose of this study is to establish detailed procedures for the maintenance optimization scheme based on the procedure in Code Case N-875. Furthermore, a quantitative trial evaluation of the core support structure of the next SFR under development in Japan is also performed using the maintenance optimization scheme.

Journal Articles

Attention-based time series analysis for data-driven anomaly detection in nuclear power plants

Dong, F.*; Chen, S.*; Demachi, Kazuyuki*; Yoshikawa, Masanori; Seki, Akiyuki; Takaya, Shigeru

Nuclear Engineering and Design, 404, p.112161_1 - 112161_15, 2023/04

 Times Cited Count:0 Percentile:92.04(Nuclear Science & Technology)

Journal Articles

Proposal of detailed procedures of determining rational in-service inspection requirements based on system based code concept

Yada, Hiroki; Takaya, Shigeru; Morohoshi, Kyoichi*; Yokoi, Shinobu*

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 9 Pages, 2022/08

In order to develop rationalized maintenance plans of nuclear power plants, it is necessary to consider characteristics of each plant. For sodium-cooled fast reactor (SFR) plants, there are constraints on inspections due to the specialty that sodium equipment needs to be handled, which is one of the important points when considering rationalization of maintenance. Therefore, we previously proposed a maintenance optimization scheme based on the System Based Code (SBC) concept. One of proposed scheme goals is to develop detailed procedures of preparing a rationalized maintenance plan. In this study, the procedures to determine inspections for potential degradation and additional inspections in terms of defense-in-depth have been further clarified. Furthermore, the modified maintenance optimization scheme is also illustrated by a quantitative trial evaluation of the core support structure of the next SFR under development in Japan.

Journal Articles

Development of ARKADIA for the innovation of advanced nuclear reactor design process (Overview of optimization process development in design optimization support tool, ARKADIA-Design)

Tanaka, Masaaki; Doda, Norihiro; Yokoyama, Kenji; Mori, Takero; Okajima, Satoshi; Hashidate, Ryuta; Yada, Hiroki; Oki, Shigeo; Miyazaki, Masashi; Takaya, Shigeru

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2022/07

To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, development of an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) is undergoing to achieve the design of an advanced nuclear reactor as a safe, economic, and sustainable carbon-free energy source. In this paper, focusing on the ARKADIA-Design as a part of it, the progress in the development of optimization processes on the representative problems in the fields of the core design, the plant structure design, and the maintenance schedule planning are introduced.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Fundamental study on scheduling of inspection process for fast reactor plants

Suzuki, Masaaki*; Ito, Mari*; Hashidate, Ryuta; Takahashi, Keita; Yada, Hiroki; Takaya, Shigeru

2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI 2020), p.797 - 801, 2021/07

Journal Articles

Proposal of maintenance rationalization for next-generation fast reactors based on the analysis of the prolonged maintenance of the prototype fast-breeder reactor in Japan, "Monju", 1; Analysis of plant schedule of "Monju" in cold shutdown

Hashidate, Ryuta; Toyota, Kodai; Takahashi, Keita; Yada, Hiroki; Takaya, Shigeru

Hozengaku, 19(4), p.115 - 122, 2021/01

In order to improve both safety and economic efficiency of a nuclear power plant, it is necessary to realize rational maintenance based on characteristics of the plant. The prototype fast-breeder reactor in Japan, Monju, spent most of the year for the maintenance. Thus, it is important to identify causes of the prolonged maintenance of Monju and to investigate countermeasures for implementation of rational maintenance of next-generation fast reactors. In this study, the authors investigated the causes of the prolonged maintenance of Monju during reactor cold shutdown based on the plant schedule of Monju. In addition, we proposed the maintenance optimization idea for next-generation fast reactors to solve the revealed issues.

Journal Articles

Proposal of inspection rationalization method and application for sodium cooled fast reactor

Yada, Hiroki; Takaya, Shigeru; Enuma, Yasuhiro

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

Journal Articles

A Simplified method for evaluating sloshing impact pressure on a flat roof based on Wagner's theory

Takaya, Shigeru; Fujisaki, Tatsuya*

Mechanical Engineering Journal (Internet), 7(3), p.19-00526_1 - 19-00526_10, 2020/06

In severe seismic conditions, sloshing waves are considered to even reach a roof slab of a reactor vessel. The structural integrity of roof slabs is required to be evaluated against sloshing impacts. However, there is no widely recognized evaluation method for sloshing impact pressure on flat roofs yet. Therefore, in this paper, a simplified evaluation method is proposed based on Wagner's theory, which is a well-known classic theory for evaluating impact pressures on rigid wedges dropping on water surfaces. In the proposed method, we assume an equivalent wedge on a flat roof. The impact pressure on the equivalent wedge is evaluated by applying Wagner's theory. Computational fluid dynamics analysis is conducted to confirm that a key assumption of Wagner's theory is applicable to the evaluation of sloshing impact on a flat roof. In addition, the predictability of the proposed method is investigated by comparing literature data of sloshing experiments with the estimated values.

Journal Articles

Influence of dead weight and internal pressure to seismic buckling probability of fast reactor vessels

Takaya, Shigeru; Sasaki, Naoto*

Mechanical Engineering Journal (Internet), 7(3), p.19-00549_1 - 19-00549_9, 2020/06

Seismic buckling of vessels is one of main concerns for the design of fast reactor plants in Japan. In previous studies, we discussed evaluation methods of seismic buckling probability of vessels by taking account of seismic hazards in order to rationalize seismic buckling evaluation, and proposed a rule for seismic buckling of vessels based on the load and resistant factor design method. The proposed method deals with only seismic load, but in actuality, dead weight and internal pressure also exist. In this study, the rule was expanded so that dead weight and internal pressure can be taken into account. Furthermore, the influences of dead weight and internal pressure to seismic buckling evaluation were discussed. As result, it was shown that approximately 10 to 20% of further rationalization of allowable seismic load could be achieved by considering dead weight and internal pressure in the evaluation.

Journal Articles

Development of prototype reactor maintenance, 3; Application to valves of sodium-cooled reactor prototype

Chikazawa, Yoshitaka; Takaya, Shigeru; Tagawa, Akihiro; Kubo, Shigenobu

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 6 Pages, 2019/05

A maintenance management required to prototype nuclear power reactors has been developed. One of important mission of a prototype reactor is to develop maintenance program for commercial reactors step by step securing safety. Since operating experience at the early stage is limited, the maintenance program for the prototype reactor should be a progressive one. It has to be modified and improved frequently taking into account R&D insight and operation experiences. Additionally, the maintenance program has to consider features of the prototype reactor even at the early stage. To select maintenance grades on particular components/systems, risk informed and graded approaches are effective. And maintenance programs have to take into account degradation mechanism originally due to reactor features. In this paper, applications for maintenance program on sodium valves of prototype fast breeder reactor Monju are studied as an example of prototype sodium-cooled reactors (SFR).

Journal Articles

Proposal of a simple evaluation method for sloshing impact pressure on flat roofs

Takaya, Shigeru; Fujisaki, Tatsuya*

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 6 Pages, 2018/07

Sloshing is one of important issues for both loop-type and tank-type fast reactors with free liquid surface. Periods of seismic vibration are lengthened by base isolation systems installed to prevent damages to facilities during earthquakes, and get close to the natural periods of sloshing. As a result, sloshing is promoted. Sloshing waves are assumed to even reach a roof slab of a reactor vessel in severe seismic conditions. It is important to evaluate structural integrity for sloshing impacts on roofs. However, there are not any established evaluation methods for impact pressure on flat roofs yet. Therefore, in this study, a simple evaluation method is proposed based on Wagner's theory. The effectiveness of the proposed method is illustrated using computational fluid dynamics analysis and literature data of sloshing experiments.

Journal Articles

Proposal on LBB evaluation conditions for sodium cooled fast reactor pipes and effects of pipe parameters

Yada, Hiroki; Takaya, Shigeru; Wakai, Takashi; Nakai, Satoru; Machida, Hideo*

Nihon Kikai Gakkai Rombunshu (Internet), 84(859), p.17-00389_1 - 17-00389_15, 2018/03

no abstracts in English

Journal Articles

Creep-fatigue evaluation method for weld joints of Mod.9Cr-1Mo steel, 1; Proposal of the evaluation method based on finite element analysis and uniaxial testing

Ando, Masanori; Takaya, Shigeru

Nuclear Engineering and Design, 323, p.463 - 473, 2017/11

AA2016-0317.pdf:0.77MB

 Times Cited Count:2 Percentile:29.14(Nuclear Science & Technology)

In the present study, a method for creep-fatigue life evaluation of Mod.9Cr-1Mo steel weld joint was proposed based on finite element analysis (FEA). Since the point of the creep-fatigue life evaluation in the weld joint is a consideration of the metallurgical discontinuities, FEA was performed using a model with three material properties, a base metal (BM), weld metal (WM) and a heat-affected zone (HAZ) formed in the base metal due to the welding heat input, to consider the mutual relationships among them. The material properties of these three materials were collected and utilized in FEA for considering such metallurgical discontinuities. The creep-fatigue life estimated using the proposed evaluation method based on the FEA results were compared with available creep-fatigue test data, and the proposed method was found to predict the number of cycles to failure within a factor of 3.

Journal Articles

Numerical analysis of flow-induced vibration of large diameter pipe with short elbow

Takaya, Shigeru; Fujisaki, Tatsuya*; Tanaka, Masaaki

Proceedings of 2017 ASME Pressure Vessels and Piping Conference (PVP 2017) (CD-ROM), 8 Pages, 2017/07

Flow-induced vibration (FIV) of a hot-leg piping is one of main concerns in the design of an advanced loop-type sodium cooled fast reactor. We have been developing numerical analysis models to deal with this issue. In this study, computational fluid dynamics (CFD) simulation of a 1/3 scaled-model of the hot-leg piping was conducted. The results such as velocity profiles and power spectral densities (PSD) of pressure fluctuations were compared with experiment ones. The simulated PSD of pressure fluctuation at the recirculation region agreed well with the experiment. Then, stress induced by FIV was evaluated using pressure fluctuation data calculated by the CFD simulation. The calculated stress generally agrees well the measurement values, which indicates the importance of precise evaluation of the PSD of pressure fluctuation at the recirculation region for evaluation of FIV of the hot-leg piping with a short elbow.

Journal Articles

Load and resistance factor design approach for seismic buckling of fast reactor vessels

Takaya, Shigeru; Sasaki, Naoto*; Asayama, Tai; Kamishima, Yoshio*

Mechanical Engineering Journal (Internet), 4(3), p.16-00558_1 - 16-00558_12, 2017/06

In this study, we developed a new design rule for the prevention of seismic buckling of vessels using the load and resistance factor design method to enable more rational vessel designs. The effectiveness of the new design rule was illustrated in comparison with the current provision.

204 (Records 1-20 displayed on this page)