Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ueta, Shohei; Aihara, Jun; Yasuda, Atsushi; Ishibashi, Hideharu; Takayama, Tomoo; Sawa, Kazuhiro
Journal of Nuclear Materials, 376(2), p.146 - 151, 2008/05
Times Cited Count:59 Percentile:95.45(Materials Science, Multidisciplinary)The Very-High-Temperature Reactor (VHTR) is the one of the most promising candidates for the Generation IV Nuclear Energy System. The VHTR fuel should exhibit excellent safety performance up to burn-ups of about 15 to 20%FIMA and fluences of 610
n/m
(E
0.1 MeV). There is no experimental data which has proved the intactness of conventional SiC-coated fuel particles under such severe condition. Japan Atomic Energy Agency (JAEA) developed Zirconium carbide (ZrC)-coated fuel particles which is expected to maintain its intactness under higher temperature and burn-up compared with SiC-coating layer. JAEA has newly started the development of coating process by large-scale and of inspection method, and the irradiation of ZrC-coated particles from 2004. The fabrication tests of ZrC-coating have been started by new-series coater, and uniform ZrC coating layer has successfully been fabricated by the improvement of temperature control technique.
Aihara, Jun; Ueta, Shohei; Yasuda, Atsushi; Ishibashi, Hideharu; Takayama, Tomoo; Sawa, Kazuhiro; Motohashi, Yoshinobu*
Journal of the American Ceramic Society, 90(12), p.3968 - 3972, 2007/12
Japan Atomic Energy Agency (JAEA) has started to study and develop ZrC coated fuel particles for advanced high temperature gas cooled reactors. This paper mainly focuses on the microstructures of the ZrC and isotropic dense pyrolytic carbon (PyC) coating layer produced in the early stage of the project. The structure of free carbon region in the ZrC coating layer appears to be such that c-plane was along with the ZrC grain boundary. It appears that the existence of the free carbon phase, especially with such structure, deteriorates the fission product (FP) retention performance in addition to the mechanical strength of ZrC. The PyC coating layer appears to be a medium-range ordered amorphous structure.
Takayama, Tomoo*; Ueta, Shohei; Aihara, Jun; Yasuda, Atsushi*; Ishibashi, Hideharu*; Sawa, Kazuhiro
JAEA-Research 2007-061, 32 Pages, 2007/09
As the conventional SiC coated fuel particle, the ZrC coated fuel particle is proposed as a fuel for the Very High Temperature Gas-cooled Reactor (VHTR) which is one of Generation IV nuclear reactors. Applicability of inspection methods of SiC-coated fuel particle for ZrC-coated fuel particle has been examined by comparing properties of ZrC with SiC. It was suggested that hardness, absorption X-ray coefficient, density, oxidation-resistant and chemical stability of SiC were dominant properties for conventional inspection methods such as SiC coating layer thicknesses, coating layers densities for both SiC and O-PyC layers, thorough-coatings failure fraction and SiC coating layer failure fraction. With regards to the applicability of the inspection for the SiC-coated particle, some difficulties are revealed on coating layers densities for both ZrC and O-PyC layers and of ZrC failure fraction, and it was suggested that they were major issues to be solved.
Tsuchiya, Kunihiko; Kawamura, Hiroshi; Takayama, Tomoo*; Kato, Shigeru*
Journal of Nuclear Materials, 345(2-3), p.239 - 244, 2005/10
Times Cited Count:39 Percentile:91.03(Materials Science, Multidisciplinary)no abstracts in English
Tsuchiya, Kunihiko; Hoshino, Tsuyoshi; Kawamura, Hiroshi; Takayama, Tomoo*
Journal of the Ceramic Society of Japan, Supplement, Vol.112, No.1 (CD-ROM), p.S183 - S186, 2004/05
no abstracts in English