Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 115

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on $$^{rm 99m}$$Tc separation/concentration technology from $$^{99}$$Mo by (n, $$gamma$$) method

Fujita, Yoshitaka; Hu, X.*; Takeuchi, Tomoaki; Takeda, Ryoma; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; Hori, Junichi*; Suzuki, Tatsuya*; Suematsu, Hisayuki*; Ide, Hiroshi

KURNS Progress Report 2022, P. 110, 2023/07

no abstracts in English

Journal Articles

Fact-finding survey on the competencies and literacy of radiological technologists regarding radiation disasters

Arai, Tomohiro*; Murata, Sho*; Watanabe, Yuichi*; Ishihara, Toshihiro*; Fukamizu, Yoshiya*; Takeda, Satoshi*; Ebata, Kiyokadzu*; Watanabe, Yuki; Takashima, Yoshio*; Kaneko, Junichi*

Journal of X-Ray Science and Technology, 31(2), p.237 - 245, 2023/03

 Times Cited Count:0 Percentile:0(Instruments & Instrumentation)

Radiological technologists have received specialized education about radiation and serve as risk communicators who aim to lessen patients' anxiety about radiation exposure, in addition to performing radiological examinations in routine clinical practice. Also, Radiological technologists across Japan were dispatched to the affected area to conduct an essential procedure-screening the belongings and body surfaces of evacuees for contamination at the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant operated by Tokyo Electric Power Company in March 2011. In this study, we conducted a fact-finding survey on knowledge and awareness of radiation disasters among radiological technologists at National Hospital Organization facilities in Japan to reveal their literacy and competencies regarding radiation disasters. Also, we compared the knowledge and awareness of radiation disasters among Japanese radiological technologists between nuclear power station areas and non-nuclear power station areas and discuss ideal human resource development for radiological technologists to be ready to serve during a radiation disaster.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

JAEA Reports

Report of the design examination and the installation work for the radiation shield at the beam injection area in the 3 GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

JAEA-Technology 2021-019, 105 Pages, 2021/11

JAEA-Technology-2021-019.pdf:10.25MB

Since a user operation startup, the 3 GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS, such as the magnet, vacuum chambers, beam monitors, etc., increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have organized a task force for the installation of the shield. The task force has aimed to optimize the structure of the radiation shield, construct the installation procedure with due consideration of the worker's dose suppression. As the examination result of the shield design, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The renewal work required to install the shielding has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area. It was a large-scale work to occupy the beam injection area during almost of the summer maintenance period. However, it is considered very meaningful for dose suppression in future maintenance works.

Journal Articles

Radiation shielding installation for beam injection section of 3GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.238 - 242, 2021/10

Since a user operation startup, the 3GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The installation work of the shield has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area.

Journal Articles

Spin-orbit-induced Ising ferromagnetism at a van der Waals interface

Matsuoka, Hideki*; Barnes, S. E.*; Ieda, Junichi; Maekawa, Sadamichi; Bahramy, M. S.*; Saika, B. K.*; Takeda, Yukiharu; Wadachi, Hiroki*; Wang, Y.*; Yoshida, Satoshi*; et al.

Nano Letters, 21(4), p.1807 - 1814, 2021/02

 Times Cited Count:13 Percentile:77.64(Chemistry, Multidisciplinary)

Journal Articles

Activation in injection area of J-PARC 3-GeV rapid cycling synchrotron and its countermeasures

Yamamoto, Kazami; Yamakawa, Emi*; Takayanagi, Tomohiro; Miki, Nobuharu*; Kamiya, Junichiro; Saha, P. K.; Yoshimoto, Masahiro; Yanagibashi, Toru*; Horino, Koki*; Nakanoya, Takamitsu; et al.

ANS RPSD 2018; 20th Topical Meeting of the Radiation Protection and Shielding Division of ANS (CD-ROM), 9 Pages, 2018/08

The existing beam power of the J-PARC Rapid Cycling Synchrotron is up to 500 kW, and higher radiation doses are concentrated in the injection area. These activations are caused by the interaction between the foil and the beam. To reduce dose exposure to workers near the injection point, we study a new design of the injection scheme. Experience has shown that eddy currents are generated in the metal flange near the magnet owing to the pulsed magnetic field, and the temperature exceeds 100 degrees C. The shield installed in the new injection system needs to have a layer structure, in which an insulator is inserted between iron shields to reduce the eddy current. From the results of the shielding calculation, even if 1 mm of polyethylene was inserted between two 9-mm-thick SUS 316 plates, which serve as shielding material, the shielding performance was reduced only about 5%, and we confirmed that it would function well.

Journal Articles

New injection system design of the J-PARC rapid cycling synchrotron

Yamamoto, Kazami; Kamiya, Junichiro; Saha, P. K.; Takayanagi, Tomohiro; Yoshimoto, Masahiro; Hotchi, Hideaki; Harada, Hiroyuki; Takeda, Osamu*; Miki, Nobuharu*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.374 - 378, 2017/12

The 3-GeV Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) aims to deliver 1-MW proton beam to the neutron target and Main Ring synchrotron. Present beam power of the Rapid Cycling Synchrotron is up to 500-kW and the higher radiation doses were concentrated in the injection area. These activations were caused by the interaction between the foil and the beam. To reduce the worker dose near the injection point, we have studied a new design of the injection scheme to secure enough space for radiation shielding and bellows. In the new system, two of four injection pulse bump magnets are replaced and we are able to ensure the additional space around the injection foil chamber. So far, new injection system seems not impossible. However, preliminary study result indicated that temperature of the duct and shielding metals would be slightly higher. The eddy current due to the shift bump magnet field generates heat. Thus we have to study details of above effect.

Journal Articles

A Failure investigation of the beam collimator system in the J-PARC 3 GeV rapid cycling synchrotron

Okabe, Kota; Yamamoto, Kazami; Kamiya, Junichiro; Takayanagi, Tomohiro; Yamamoto, Masanobu; Yoshimoto, Masahiro; Takeda, Osamu*; Horino, Koki*; Ueno, Tomoaki*; Yanagibashi, Toru*; et al.

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.853 - 857, 2017/12

The most important issue is to reduce the uncontrolled beam loss in the high intensity hadron accelerator such as J-PARC proton accelerators. The J-PARC 3 GeV Synchrotron (RCS) has a collimator system which narrows a high intensity beam in the RCS. After startup of RCS in 2007, the collimator system of the RCS worked well. However, in April 2016, vacuum leakage at the collimator system occurred during the maintenance operation. To investigate a cause of the failure, we took apart iron shields of the collimator reducing exposed dose of operators. As a result of inspection, we succeeded to identify the cause of the vacuum leakage failure. In this presentation, we report the failure investigation of the beam collimator system in the RCS.

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

Journal Articles

New injection scheme of J-PARC rapid cycling synchrotron

Yamamoto, Kazami; Kamiya, Junichiro; Saha, P. K.; Takayanagi, Tomohiro; Yoshimoto, Masahiro; Hotchi, Hideaki; Harada, Hiroyuki; Takeda, Osamu*; Miki, Nobuharu*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.579 - 581, 2017/05

The 3-GeV Rapid Cycling Synchrotron of Japan Proton Accelerator Research Complex aims to deliver 1-MW proton beam to the neutron target and Main Ring synchrotron. Present beam power of the Rapid Cycling Synchrotron is up to 500-kW and the higher radiation doses were concentrated in the injection area. These activations were caused by the interaction between the foil and the beam. To reduce the worker dose near the injection point, we have studied a new design of the injection scheme to secure enough space for radiation shielding and bellows. In the new system, two of four injection pulse bump magnets are replaced and we are able to ensure the additional space around the injection foil chamber. So far, new injection system seems not impossible. However, preliminary study result indicated that temperature of the duct and shielding metals would be slightly higher. The eddy current due to the shift bump magnet field generates heat. Thus we have to study details of above effect.

Journal Articles

A Malfunction of the beam collimator system in J-PARC 3 GeV rapid cycling synchrotoron

Yamamoto, Kazami; Okabe, Kota; Kamiya, Junichiro; Yoshimoto, Masahiro; Takeda, Osamu; Takayanagi, Tomohiro; Yamamoto, Masanobu

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.314 - 318, 2016/11

The 3 GeV Rapid-Cycling Synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) project generates 1MW proton beam for the neutron experiments and Main ring accelerator. In case of such high intensity hadron accelerator, the most important issue is to reduce the uncontrolled loss. The beam collimation system is designed for this purpose. In the present design, the physical aperture is 1.5 times wider than the primary collimator aperture and the beam loss can be enough localized on this condition. After a startup of RCS in 2007, the collimator system of RCS worked well. But vacuum leakage occurred during the maintenance period in April, 2016. Since it was expected that the beam collimator was radio-activated very much, we took the influence of radiation into consideration and designed the collimator (ie. a remote clamp system to connect/take off it with a vacuum flange away from itself). Therefore, during the recovery work of the collimator, we were able to reduce the worker dose to less than 60 micro Sv though the collimator block had a residual dose of 40 mSv/h.

Journal Articles

Alignment plan and survey results of the equipment for J-PARC 3GeV RCS

Tani, Norio; Hotchi, Hideaki; Kamiya, Junichiro; Kinsho, Michikazu; Takeda, Osamu; Yamamoto, Masanobu

Proceedings of 4th International Particle Accelerator Conference (IPAC '13) (Internet), p.2971 - 2973, 2013/06

Misalignment of several millimeters of the magnets of J-PARC 3GeV RCS in both horizontal and vertical directions was caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011. As the result of orbit calculation showed that the beam loss was acceptable for beam operation at 300 kW, beam operation with the current placement has been implemented. Realignment of the equipment will be carried out from August to December in 2013. As the survey carried out in the summer of 2012 found out misalignment of vacuum ducts, their positioning is necessary. In this paper these measurement result and latest alignment plan for J-PARC 3GeV RCS are reported.

Journal Articles

Current status of a new polarized neutron reflectometer at the intense pulsed neutron source of the Materials and Life Science Experimental Facility (MLF) of J-PARC

Takeda, Masayasu; Yamazaki, Dai; Soyama, Kazuhiko; Maruyama, Ryuji; Hayashida, Hirotoshi; Asaoka, Hidehito; Yamazaki, Tatsuya; Kubota, Masato; Aizawa, Kazuya; Arai, Masatoshi; et al.

Chinese Journal of Physics, 50(2), p.161 - 170, 2012/04

Journal Articles

Small-angle neutron scattering measurements of the averaged internal structures in neodymium-iron-boron (Nd-Fe-B) sintered magnets

Takeda, Masayasu; Suzuki, Junichi*; Akiya, Takahiro*; Kato, Hiroaki*

Nihon Kinzoku Gakkai-Shi, 76(3), p.165 - 176, 2012/03

 Times Cited Count:1 Percentile:78.66(Metallurgy & Metallurgical Engineering)

Journal Articles

Applications of $$^{3}$$He neutron spin filters on the small-angle neutron scattering spectrometer SANS-J-II

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Aizawa, Kazuya; Arai, Masatoshi; Noda, Yohei; et al.

Journal of Physics; Conference Series, 294(1), p.012017_1 - 012017_7, 2011/06

 Times Cited Count:2 Percentile:65.52(Physics, Applied)

Journal Articles

Structure of glasses for $$^{3}$$He neutron spin filter cells

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.

Journal of Physics; Conference Series, 294(1), p.012004_1 - 012004_7, 2011/06

 Times Cited Count:2 Percentile:65.52(Physics, Applied)

Journal Articles

Research on glass cells for $$^{3}$$He neutron spin filters

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.

Physica B; Condensed Matter, 406(12), p.2443 - 2447, 2011/06

Journal Articles

Research on glass cells for $$^{3}$$He neutron spin filters

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.

Physica B; Condensed Matter, 406(12), p.2443 - 2447, 2011/06

 Times Cited Count:3 Percentile:16.25(Physics, Condensed Matter)

Journal Articles

Characterization of glasses for $$^{3}$$He neutron spin filter cells

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Arai, Masatoshi; Takeda, Masayasu; et al.

Nuclear Instruments and Methods in Physics Research A, 634(1, Suppl.), p.S122 - S125, 2011/04

115 (Records 1-20 displayed on this page)