Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sumida, Kazuki; Kusaka, Shotaro*; Takeda, Yukiharu; Kobayashi, Katsuyoshi*; Hirahara, Toru*
Physical Review B, 106(19), p.195421_1 - 195421_7, 2022/11
Times Cited Count:2 Percentile:20.28(Materials Science, Multidisciplinary)Yamagami, Kohei*; Fujisawa, Yuita*; Pardo-Almanza, M*; Smith, B. R. M.*; Sumida, Kazuki; Takeda, Yukiharu; Okada, Yoshinori*
Physical Review B, 106(4), p.045137_1 - 045137_8, 2022/07
Times Cited Count:6 Percentile:56.00(Materials Science, Multidisciplinary)Sumida, Kazuki; Takeda, Yukiharu; Kusaka, Shotaro*; Kobayashi, Katsuyoshi*; Hirahara, Toru*
Physical Review Materials (Internet), 6(1), p.014006_1 - 014006_8, 2022/01
Times Cited Count:7 Percentile:53.08(Materials Science, Multidisciplinary)We investigated the intrinsic magnetic properties of the two-dimensional ferromagnetic candidate monolayer 1-VSe films using X-ray magnetic circular dichroism (XMCD), an element-specific magnetic probe. By performing high-resolution measurements, we succeeded in detecting a clear XMCD signal from the atomically thin 1-VSe films under an external magnetic field. Through manipulation of the X-ray incidence angle, we were able to disentangle the in-plane and out-of-plane magnetic properties and found a strong magnetic anisotropy. Moreover, magnetic field- and temperature-dependent XMCD revealed that there is no long-range ferromagnetic ordering even at 6 K, but short-range ferromagnetic and antiferromagnetic interactions between neighboring vanadium ions exist. Such low-temperature magnetic behavior signifies that the monolayer 1-VSe is on the verge of ferromagnetism, and this fact accounts for the reported ferromagnetism in VSe-based heterostructures.
Fukasawa, Takuro*; Kusaka, Shotaro*; Sumida, Kazuki; Hashizume, Mizuki*; Ichinokura, Satoru*; Takeda, Yukiharu; Ideta, Shinichiro*; Tanaka, Kiyohisa*; Shimizu, Ryota*; Hitosugi, Taro*; et al.
Physical Review B, 103(20), p.205405_1 - 205405_6, 2021/05
Times Cited Count:9 Percentile:56.14(Materials Science, Multidisciplinary)Hirahara, Toru*; Otrokov, M. M.*; Sasaki, Taisuke*; Sumida, Kazuki*; Tomohiro, Yuta*; Kusaka, Shotaro*; Okuyama, Yuma*; Ichinokura, Satoru*; Kobayashi, Masaki*; Takeda, Yukiharu; et al.
Nature Communications (Internet), 11, p.4821_1 - 4821_8, 2020/09
Times Cited Count:46 Percentile:92.39(Multidisciplinary Sciences)Yoshikawa, Tomoki*; Antonov, V. N.*; Kono, Takashi*; Kakoki, Masaaki*; Sumida, Kazuki; Miyamoto, Koji*; Takeda, Yukiharu; Saito, Yuji; Goto, Kazuki*; Sakuraba, Yuya*; et al.
Physical Review B, 102(6), p.064428_1 - 064428_7, 2020/08
Times Cited Count:3 Percentile:16.26(Materials Science, Multidisciplinary)Tachi, Yukio; Sato, Tomofumi*; Takeda, Chizuko*; Ishidera, Takamitsu; Fujiwara, Kenso; Iijima, Kazuki
Science of the Total Environment, 724, p.138097_1 - 138097_10, 2020/07
Times Cited Count:11 Percentile:43.12(Environmental Sciences)To understand and predict radiocesium transport behaviors in the environment, sorption and fixation behaviors of radiocesium on river sediments from Ukedo and Odaka rivers around the Fukushima Daiichi Nuclear Power Plant were investigated systematically focusing on Cs sorption and fixation mechanisms and their relationship with Cs concentrations and sediment properties including clay mineralogy and organic matter.
Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.
Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05
Times Cited Count:18 Percentile:75.44(Physics, Multidisciplinary)The structure of a neutron-rich F nucleus is investigated by a quasifree () knockout reaction. The sum of spectroscopic factors of orbital is found to be 1.0 0.3. The result shows that the O core of F nucleus significantly differs from a free O nucleus, and the core consists of 35% O, and 65% excited O. The result shows that the O core of F nucleus significantly differs from a free O nucleus. The result may infer that the addition of the proton considerably changes the neutron structure in F from that in O, which could be a possible mechanism responsible for the oxygen dripline anomaly.
Kono, Takashi*; Kakoki, Masaaki*; Yoshikawa, Tomoki*; Wang, X.*; Sumida, Kazuki*; Miyamoto, Koji*; Muro, Takayuki*; Takeda, Yukiharu; Saito, Yuji; Goto, Kazuki*; et al.
Physical Review B, 100(16), p.165120_1 - 165120_6, 2019/10
Times Cited Count:7 Percentile:33.40(Materials Science, Multidisciplinary)Sumida, Kazuki*; Kakoki, Masaaki*; Reimann, J.*; Nurmamat, M.*; Goto, Shinichi*; Takeda, Yukiharu; Saito, Yuji; Kokh, K. A.*; Tereshchenko, O. E.*; Gdde, J.*; et al.
New Journal of Physics (Internet), 21(9), p.093006_1 - 093006_8, 2019/09
Times Cited Count:11 Percentile:61.30(Physics, Multidisciplinary)Ye, M.*; Xu, T.*; Li, G.*; Qiao, S.*; Takeda, Yukiharu; Saito, Yuji; Zhu, S.-Y.*; Nurmamat, M.*; Sumida, Kazuki*; Ishida, Yukiaki*; et al.
Physical Review B, 99(14), p.144413_1 - 144413_7, 2019/04
Times Cited Count:14 Percentile:56.70(Materials Science, Multidisciplinary)Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.
Ye, M.*; Li, W.*; Zhu, S.-Y.*; Takeda, Yukiharu; Saito, Yuji; Wang, J.*; Pan, H.*; Nurmamat, M.*; Sumida, Kazuki*; Ji, F.*; et al.
Nature Communications (Internet), 6, p.8913_1 - 8913_7, 2015/11
Times Cited Count:58 Percentile:90.37(Multidisciplinary Sciences)Magnetically doped topological insulators are predicted to exhibit exotic phenomena including the quantized anomalous Hall effect and a dissipationless transport, which facilitate the development of low-power-consumption devices using electron spins. The realization of the quantized anomalous Hall effect is so far restricted to the Cr-doped (Sb,Bi)Te system at extremely low temperature; however, the microscopic origin of its ferromagnetism is poorly understood. Here we present an element-resolved study for Cr-doped (Sb,Bi)Te using X-ray magnetic circular dichroism to unambiguously show that the long-range magnetic order is mediated by the p-hole carriers of the host lattice, and the interaction between the Sb(Te) p and Cr d states is crucial.
Sumida, Kazuki*; Shirai, Kaito*; Zhu, S.-Y.*; Taniguchi, Masaki*; Ye, M.*; Ueda, Shigenori*; Takeda, Yukiharu; Saito, Yuji; Aseguinolaza, I. R.*; Barandiarn, J. M.*; et al.
Physical Review B, 91(13), p.134417_1 - 134417_6, 2015/04
Times Cited Count:6 Percentile:26.77(Materials Science, Multidisciplinary)Yamada, Mitsugu*; Tamada, Taro; Takeda, Kazuki*; Matsumoto, Fumiko*; Ono, Hiraku*; Kosugi, Masayuki*; Takaba, Kiyofumi*; Shoyama, Yoshinari*; Kimura, Shigenobu*; Kuroki, Ryota; et al.
Journal of Molecular Biology, 425(22), p.4295 - 4306, 2013/11
Times Cited Count:23 Percentile:52.42(Biochemistry & Molecular Biology)NADH-Cytochrome reductase (b5R), a flavoprotein consisting of NADH and flavin adenine dinucleotide (FAD) binding domains, catalyzes electron transfer from the two-electron carrier NADH to the one-electron carrier cytochrome (Cb5). The crystal structures of both the fully reduced form and the oxidized form of porcine liver b5R were determined. In the reduced b5R structure determined at 1.68 resolution, the relative configuration of the two domains was slightly shifted in comparison with that of the oxidized form. This shift resulted in an increase in the solvent-accessible surface area of FAD and created a new hydrogen-bonding interaction between the N5 atom of the isoalloxazine ring of FAD and the hydroxyl oxygen atom of Thr66, which is considered to be a key residue in the release of a proton from the N5 atom. The isoalloxazine ring of FAD in the reduced form is flat as in the oxidized form and stacked together with the nicotinamide ring of NAD. Determination of the oxidized b5R structure, including the hydrogen atoms, determined at 0.78 resolution revealed the details of a hydrogen-bonding network from the N5 atom of FAD to His49 via Thr66. Both of the reduced and oxidized b5R structures explain how backflow in this catalytic cycle is prevented and the transfer of electrons to one-electron acceptors such as Cb5 is accelerated. Furthermore, crystallographic analysis by the cryo-trapping method suggests that re-oxidation follows a two-step mechanism. These results provide structural insights into the catalytic cycle of b5R.
Kuramitsu, Yasuhiro*; Nakanii, Nobuhiko*; Kondo, Kiminori; Sakawa, Yoichi*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; et al.
Physical Review E, 83(2), p.026401_1 - 026401_6, 2011/02
Times Cited Count:17 Percentile:66.17(Physics, Fluids & Plasmas)An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma.
Kuramitsu, Yasuhiro*; Nakanii, Nobuhiko*; Kondo, Kiminori; Sakawa, Yoichi*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; et al.
Physics of Plasmas, 18(1), p.010701_1 - 010701_4, 2011/01
Times Cited Count:20 Percentile:62.85(Physics, Fluids & Plasmas)Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of 2.
Nakanii, Nobuhiko*; Kondo, Kiminori; Kuramitsu, Yasuhiro*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; Tanimoto, Tsuyoshi*; et al.
Applied Physics Letters, 93(8), p.081501_1 - 081501_3, 2008/08
Times Cited Count:4 Percentile:18.46(Physics, Applied)Energetic electrons were generated by the interaction of a high-intensity laser pulse with a plasma preformed from a hollow plastic cylinder via laser-driven implosion. The spectra of a comparatively high-density plasma had a bump around 10 MeV. Simple numerical calculations explained the spectra obtained in this experiment. This indicates that the plasma tube has sufficient potential to convert a Maxwellian spectrum to a comparatively narrow spectrum.
Hirano, Yu; Yamada, Mitsugu*; Kurihara, Kazuo; Shoyama, Yoshinari*; Kuroki, Ryota; Kusaka, Katsuhiro*; Kimura, Shigenobu*; Takeda, Kazuki*; Miki, Kunio*; Tamada, Taro
no journal, ,
NADH-cytochrome reductase (b5R), a flavoprotein consisting of NADH- and FAD- domains, catalyzes electron transfer from the two-electron carrier NADH to the one-electron carrier cytochrome . The reaction catalyzed by plays a role in fatty acid synthesis, cholesterol synthesis, and xenobiotic oxidation as a member of the electron transport chain on the endoplasmic reticulum. We have already determined the crystal structures of both the fully reduced and oxidized forms of porcine liver b5R by X-ray crystallography, but, its detail mechanism, especially hydride/proton transfers and exact states of semiquinone, still remains unknown. The hydrogen information obtained by neutron crystallography will be essential for the real understanding of catalytic cycle of the . A large crystal with the size of almost 2 mm was transferred to cryo-protectant solution by stepwise soaking method, and then were flash-frozen in a cold nitrogen gas stream. Using this crystal, we collected neutron data to 1.4 resolution at BL03 (iBIX), MLF, J-PARC, and then collected to 0.85 resolution at BL5A, PF, KEK. Crystallographic refinement using both neutron and X-ray data is in progress.
Tamada, Taro; Yamada, Mitsugu*; Takeda, Kazuki*; Matsumoto, Fumiko*; Kimura, Shigenobu*; Kuroki, Ryota; Miki, Kunio*
no journal, ,
NADH-cytochrome reductase (b5R) is a flavoprotein consisting of NADH- and FAD- domains, and catalyzes the electron transfer from two electron carriers of NADH to one electron carrier of cytochrome (Cb5). The structure of the fully reduced form of porcine liver b5R was determined using a crystal grown under anaerobic condition. In the reduced b5R structure, which was determined at 1.68 resolution, the relative location of the two domains was slightly shifted in comparison with that of the oxidized form. This shift resulted in an increase in the solvent accessible surface area of FAD, and created a new hydrogen bonding interaction between the N5 atom of the isoalloxazine ring of FAD and the hydroxyl oxygen atom of Thr66, which is considered to be a key residue in the release of a proton from the N5 atom. The isoalloxazine ring of FAD in the reduced form is flat, which is similar to that in the oxidized form, and is stacked with the nicotinamide ring of NAD. Both of reduced and oxidized b5R structures could explain how prevents the backflow and accelerates the transfer of electrons to one-electron acceptors, such as Cb5, in the catalytic cycle. Furthermore, the crystallographic analysis by the cryo-trapping method, which controls the exposure time of the fully reduced crystals against the air, suggested that re-oxidation follows a two-step mechanism. These results provide structural insights into the catalytic cycle of b5R.