検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 157 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Electronic states of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ studied by soft X-ray photoemission spectroscopy

川崎 郁斗; 藤森 伸一; 竹田 幸治; 山上 浩志; 伊覇 航*; 辺土 正人*; 仲間 隆男*; 大貫 惇睦*

Physical Review B, 100(3), p.035111_1 - 035111_8, 2019/07

We have carried out angle-integrated photoemission spectroscopy (AIPES) and angle-resolved photoemission spectroscopy (ARPES) experiments using soft X-rays on single crystals of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ grown by the Bridgman method to investigate their electronic structures. The AIPES results showed that the Eu ions in EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ are in a divalent state and a nearly trivalent state, respectively, in accord with the previously reported magnetic properties. The three-dimensional band structures and shapes of the Fermi surfaces of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ were studied by ARPES measurements. We found that the band structures near the Fermi level and Fermi surfaces of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ are very different from each other and are well reproduced by the band structure calculations based on density-functional theory for SrCu$$_2$$Ge$$_2$$ and YCu$$_2$$Si$$_2$$. This suggests that a charge transfer from the localized 4$$f$$ states into the valence bands is responsible for the difference in the electronic states between EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$.

論文

Negative Te spin polarization responsible for ferromagnetic order in the doped topological insulator V$$_{0.04}$$(Sb$$_{1-x}$$Bi$$_{x}$$)$$_{1.96}$$Te$$_{3}$$

Ye, M.*; Xu, T.*; Li, G.*; Qiao, S.*; 竹田 幸治; 斎藤 祐児; Zhu, S.-Y.*; Nurmamat, M.*; 角田 一樹*; 石田 行章*; et al.

Physical Review B, 99(14), p.144413_1 - 144413_7, 2019/04

 パーセンタイル:100(Materials Science, Multidisciplinary)

We investigate the microscopic origin of ferromagnetism coupled with topological insulators in V-doped (Sb,Bi)$$_{2}$$Te$$_{3}$$ employing X-ray magnetic circular dichroism and angle-resolved two-photon photoemission spectroscopies, combined with first-principles calculations. We found an magnetic moment at the Te site anti-parallel to that of the V and Sb sites, which plays a key role in the ferromagnetic order. We ascribe it to the hybridization between Te 5${it p}$ and V 3${it d}$ majority spin states at the Fermi energy, consistent with the Zener-type ${it p}$-${it d}$ exchange interaction scenario. The substitution of Bi for Sb suppresses the bulk ferromagnetism by introducing extra electron carriers in the majority spin channel of the Te ${it p}$ states that compensates the antiparallel magnetic moment on the Te site. Our findings reveal important clues to designing magnetic topological insulators with higher Curie temperature that work under ambient conditions.

論文

Dirac gap opening and Dirac-fermion-mediated magnetic coupling in antiferromagnetic Gd-doped topological insulators and their manipulation by synchrotron radiation

Shikin, A. M.*; Estyunin, D. A.*; Surnin, Yu. I.*; Koroleva, A. V.*; Shevchenko, E. V.*; Kokh, K. A.*; Tereshchenko, O. E.*; Kumar, S.*; Schwier, E. F.*; 島田 賢也*; et al.

Scientific Reports (Internet), 9(1), p.4813_1 - 4813_17, 2019/03

 パーセンタイル:100(Multidisciplinary Sciences)

A new kind of magnetically-doped antiferromagnetic (AFM) topological insulators (TIs), Bi$$_{1.09}$$Gd$$_{0.06}$$Sb$$_{0.85}$$Te$$_{3}$$, has been studied by angle-resolved photoemission, superconducting magnetometry (SQUID) and X-ray magnetic circular dichroism (XMCD). It has been shown that this TI is characterized by the Dirac gap at the Fermi level. In the paramagnetic phase, a surface magnetic layer is supposed to develop, where the coupling between the Gd magnetic moments is mediated by the topological surface states (TSSs). This assumption can be confirmed by opening a gap at the Dirac point indicated by the surface-sensitive ARPES, a weak hysteresis loop measured by SQUID, the XMCD showing a surface magnetic moment and the temperature dependence of electrical resistance demonstrating a mid-gap semiconducting behavior, which correlates with the temperature dependence of the surface magnetization and confirms the conclusion that only TSSs are located at the Fermi level.

論文

Manifestation of electron correlation effect in 5$$f$$ states of uranium compounds revealed by 4$$d$$-5$$f$$ resonant photoelectron spectroscopy

藤森 伸一; 小畠 雅明; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 芳賀 芳範; 山本 悦嗣; 大貫 惇睦*

Physical Review B, 99(3), p.035109_1 - 035109_5, 2019/01

 パーセンタイル:100(Materials Science, Multidisciplinary)

In the present study, we have elucidated the nature of the electron correlation effect in uranium compounds by imaging the partial $$mathrm{U}~5f$$ density of states (pDOS) of typical itinerant, localized, and heavy fermion uranium compounds by using the $$mathrm{U}$$ 4$$d$$-5$$f$$ resonant photoemission spectroscopy. Obtained $$mathrm{U}~5$$ pDOS exhibit a systematic trend depending on the physical properties of compounds: Although the coherent peak at the Fermi level can be explained by the band-structure calculation, an incoherent peak emerges on the higher binding energy side ($$lesssim 1~mathrm{eV}$$) in the cases of localized and heavy fermion compounds. The intensity and energy position of the incoherent peak is increased and shifted to a higher binding energy as the localization of the $$mathrm{U}~5$$ state increases. These behaviors are consistent with the prediction of the Mott metal-insulator transition, suggesting that the Hubbard-$$U$$ type mechanism takes an essential role in the $$5f$$ electronic structure of actinide materials.

論文

Electronic structure of URu$$_2$$Si$$_2$$ studied by photoelectron spectroscopy (INVITED)

藤森 伸一; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 芳賀 芳範; 山本 悦嗣; 大貫 惇睦*

Progress in Nuclear Science and Technology (Internet), 5, p.82 - 85, 2018/11

One of the most remarkable properties of actinide compounds is the coexistence of superconductivity and magnetic ordering which has been realized in several strongly-correlated uranium based compounds. In these compounds, both superconductivity and magnetic ordering originate from U 5f states. To understand the origin of the coexistence as well as the mechanism of the superconductivity, it is essential to reveal their U 5f electronic structures. In this presentation, the U 5f electronic structures of heavy Fermion superconductors UPd$$_2$$Al$$_3$$ and URu$$_2$$Si$$_2$$ studied by photoelectron spectroscopy using soft X-rays from SPring-8 BL23SU are presented. For UPd$$_2$$Al$$_3$$, U 4d-5f resonant photoemission experiment was performed, and its partial U 5f spectrum was revealed experimentally. Furthermore, we have applied the three-dimentional ARPES to the hidden order compound URu$$_2$$Si$$_2$$, and revealed its complete 3D electronic structure in the paramagnetic phase. Their electronic structures are discussed based on these results.

論文

Soft X-ray magnetic circular dichroism study on UGe$$_{2}$$

竹田 幸治; 岡根 哲夫; 斎藤 祐児; 山上 浩志; 山本 悦嗣; 芳賀 芳範

Progress in Nuclear Science and Technology (Internet), 5, p.171 - 174, 2018/11

In order to investigate the electronic and magnetic states of UGe$$_{2}$$ element-specifically, we have performed soft X-ray magnetic circular dichroism experiments at the U N$$_{4,5}$$ and Ge L$$_{2,3}$$ absorption edges. We have detected the XMCD signals at both the U and Ge sites and observed clear hysteresis loops in the ferromagnetic (FM) state at T = 5.5 K. From the branching ratio B, it is found that the occupation number of 5f electrons (n$$^{5f}$$) in UGe$$_{2}$$ is close to 3. In addition, applying the magneto-optical sum rules analysis to the XMCD spectrum at the U N$$_{4,5}$$ edges, the ratio of orbital magnetic moment to the spin magnetic moment (-M$$_{L}$$/M$$_{S}$$) is estimated to be 2.17. These values of B and -M$$_{L}$$/M$$_{S}$$ are comparable compared with the results of other FM superconductors: URhGe and UCoGe

論文

Local magnetic states of the weakly ferromagnetic iron-based superconductor Sr$$_{2}$$VFeAsO$$_{3-delta}$$ studied by X-ray magnetic circular dichroism

堀尾 眞史*; 竹田 幸治; 並木 宏允*; 片桐 隆雄*; 若林 勇希*; 坂本 祥哉*; 野中 洋亮*; 芝田 悟朗*; 池田 啓祐*; 斎藤 祐児; et al.

Journal of the Physical Society of Japan, 87(10), p.105001_1 - 105001_2, 2018/10

 被引用回数:1 パーセンタイル:49.95(Physics, Multidisciplinary)

We have performed X-ray magnetic circular dichroism (XMCD) measurements on the iron-based superconductor Sr$$_{2}$$VFeAsO$$_{3-delta}$$ to study the origin of weak ferromagnetism (WFM) reported for this compound. While Fe 3d electrons show a magnetic response similar to the other iron pnictides, signals from V 3d electrons remain finite at zero magnetic field and may be responsible for the WFM.

論文

Cation distribution and magnetic properties in ultrathin (Ni$$_{1-x}$$Co$$_{x}$$)Fe$$_{2}$$O$$_{4}$$ (x=0-1) layers on Si(111) studied by soft X-ray magnetic circular dichroism

若林 勇希*; 野中 洋亮*; 竹田 幸治; 坂本 祥哉*; 池田 啓祐*; Chi, Z.*; 芝田 悟朗*; 田中 新*; 斎藤 祐児; 山上 浩志; et al.

Physical Review Materials (Internet), 2(10), p.104416_1 - 104416_12, 2018/10

We study the electronic structure and magnetic properties of epitaxial (Ni$$_{1-x}$$Co$$_{x}$$)Fe$$_{2}$$O$$_{4}$$(111) layers with thicknesses $$d$$ = 1.7 - 5.2 nm grown on Al$$_{2}$$O$$_{3}$$(111)/Si(111) structures. We revealed the crystallographic (octahedral $$O_{h}$$ or tetrahedral $$T_{d}$$) sites and the valences of the Fe, Co, and Ni cations using experimental soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectra and configuration-interaction cluster-model calculation.

論文

Element-specific observation of the ferromagnetic ordering process in UCoAl via soft X-ray magnetic circular dichroism

竹田 幸治; 斎藤 祐児; 岡根 哲夫; 山上 浩志; 松田 達磨*; 山本 悦嗣; 芳賀 芳範; 大貫 惇睦*

Physical Review B, 97(18), p.184414_1 - 184414_7, 2018/05

 パーセンタイル:100(Materials Science, Multidisciplinary)

We have performed soft X-ray magnetic circular dichroism (XMCD) experiments on the itinerant-electron metamagnet UCoAl at the U 4$$d$$-5$$f$$ ($$N_mathrm{4, 5}$$) and Co 2$$p$$-3$$d$$ ($$L_mathrm{2, 3}$$) absorption edges in order to investigate the magnetic properties of the U 5$$f$$ and Co 3$$d$$ electrons separately. From the line shape of the XMCD spectrum, it is deduced that the orbital magnetic moment of the Co 3$$d$$ electrons is unusually large. Through the systematic temperature ($$T$$)- and magnetic field ($$H$$)-dependent XMCD measurements, we have obtained two types of the magnetization curve as a function of $$H$$ and $$T$$ (M-H curve and M-T curve, respectively). The metamagnetic transition from a paramagnetic state to a field-induced ferromagnetic state was observed clearly under 15 K at $$H_mathrm{M}$$. The value of the $$H_mathrm{M}$$ and its $$T$$-dependence agree well between the U and Co sites, and the bulk magnetization. Whereas, we have discovered the remarkable differences in the M-H and M-T curves between the U and Co sites. The present findings show clearly that the role of the Co 3$$d$$ electrons should be considered more carefully in order to understand the origin of the magnetic ordering in UCoAl.

論文

Preferred site occupation of 3$$d$$ atoms in Ni$$_{x}$$Fe$$_{4-x}$$N (${it x}$ = 1 and 3) films revealed by X-ray absorption spectroscopy and magnetic circular dichroism

高田 郁弥*; 伊藤 啓太*; 竹田 幸治; 斎藤 祐児; 高梨 弘毅*; 木村 昭夫*; 末益 崇*

Physical Review Materials (Internet), 2(2), p.024407_1 - 024407_5, 2018/02

X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism measurements were performed at the Ni and Fe $$L_{2,3}$$ absorption edges for Ni$$_{x}$$Fe$$_{4-x}$$N (${it x}$ = 1 and 3) epitaxial films. Shoulders at approximately 2 eV above the Ni $$L_{2,3}$$ main peaks in the XAS spectrum of Ni$$_{3}$$FeN were interpreted to originate from hybridization of orbitals between Ni 3$$d$$ at face-centered (II) sites and N 2$$p$$ at body-centered sites, while such features were missing in NiFe$$_{3}$$N film. Similar shoulders were observed at Fe $$L_{2,3}$$ edges in both films. Hence, Ni atoms preferentially occupied corner (I) sites, where the hybridization was weak because of the relatively long distance between Ni at I sites and N atoms. The relatively large magnetic moment deduced from sum-rule analysis of NiFe$$_{3}$$N also showed a good agreement with the presence of Ni atoms at I sites.

論文

Electronic structure and magnetic properties of the half-metallic ferrimagnet Mn$$_{2}$$VAl probed by soft X-ray spectroscopies

永井 浩大*; 藤原 秀紀*; 荒谷 秀和*; 藤岡 修平*; 右衛門佐 寛*; 中谷 泰博*; 木須 孝幸*; 関山 明*; 黒田 文彬*; 藤井 将*; et al.

Physical Review B, 97(3), p.035143_1 - 035143_8, 2018/01

 被引用回数:1 パーセンタイル:59.26(Materials Science, Multidisciplinary)

フェリ磁性体Mn$$_{2}$$VAl単結晶の電子構造を軟X線吸収磁気円二色性(XMCD)、軟X線共鳴非弾性散乱(RIX)によって調べた。全ての構成元素のXMCD信号を観測した。Mn L$$_{2,3}$$ XMCDの結果は、密度汎関数理論を基にしたスペクトル計算により再現でき、Mn 3$$d$$状態の遍歴的性質が明らかとなった。V L$$_{2,3}$$XMCDの結果はイオンモデル計算によって定性的に説明され、V 3$$d$$電子はかなり局在的である。この描像は、V L$$_{3}$$ RIXSで明らかとなった局所的な$$dd$$遷移と矛盾しない。

論文

Electronic structure of ThRu$$_2$$Si$$_2$$ studied by angle-resolved photoelectron spectroscopy; Elucidating the contribution of U 5$$f$$ states in URu$$_{2}$$Si$$_{2}$$

藤森 伸一; 小畠 雅明; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 松本 裕司*; 山本 悦嗣; 立岩 尚之; et al.

Physical Review B, 96(12), p.125117_1 - 125117_9, 2017/09

 被引用回数:1 パーセンタイル:81.49(Materials Science, Multidisciplinary)

The Fermi surface and band structure of $$mathrm{ThRu}_2mathrm{Si}_2$$ have been studied by angle resolved photoelectron spectroscopy (ARPES) with the incident photon energies of $$hnu$$ = 665-735 eV. Detailed band structure and the three-dimensional shape of the Fermi surface were derived experimentally, and they are quantitatively explained by the band-structure calculation based on the density functional approximation. Comparison of the experimental ARPES spectra of $$mathrm{ThRu}_2mathrm{Si}_2$$ with those of $$mathrm{URu}_2mathrm{Si}_2$$ shows that they have considerably different spectral profiles particularly in the energy range of $$E_mathrm{B} = E_mathrm{F}$$ - 1 eV. Some energy bands with their energy dispersions of about 1 eV observed in $$mathrm{URu}_2mathrm{Si}_2$$ are missing in the ARPES spectra of $$mathrm{ThRu}_2mathrm{Si}_2$$ measured along the same high symmetry line of Brillouin zone, suggesting that U 5$$f$$ states form these bands in $$mathrm{URu}_2mathrm{Si}_2$$. The relationship between the ARPES spectra of $$mathrm{URu}_2mathrm{Si}_2$$ and $$mathrm{ThRu}_2mathrm{Si}_2$$ is very different from the case between $$mathrm{CeRu}_2mathrm{Si}_2$$ and $$mathrm{LaRu}_2mathrm{Si}_2$$ where their intrinsic difference is limited only in the very vicinity of the Fermi energy. The present result argues that the U 5$$f$$ electrons in $$mathrm{URu}_2mathrm{Si}_2$$ have strong hybridization with ligand states, and essentially have an itinerant character.

論文

Electronic structures of U$$X_3$$ ($$X$$=Al, Ga, and In) studied by photoelectron spectroscopy

藤森 伸一; 小畠 雅明; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 芳賀 芳範; 山本 悦嗣; 大貫 惇睦*

Physical Review B, 96(11), p.115126_1 - 115126_10, 2017/09

 被引用回数:2 パーセンタイル:66.33(Materials Science, Multidisciplinary)

The electronic structures of U$$X_3$$ ($$X$$=Al, Ga, and In) were studied by photoelectron spectroscopy to understand the the relationship between their electronic structure and magnetic properties. The band structures and Fermi surfaces of UAl$$_3$$ and UGa$$_3$$ were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band structure calculations. The topologies of the Fermi surfaces and the band structures of UAl$$_3$$ and UGa$$_3$$ were explained reasonably well by the calculation, although bands near the Fermi level ($$E_mathrm{F}$$) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl$$_3$$ and UGa$$_3$$ are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their magnetism.

論文

Element specific electronic states and spin-flip-like behavior of Ce in (Ce$$_{0.2}$$Gd$$_{0.8}$$)Ni composed of heavy fermion CeNi and ferri-magnet GdNi through XMCD method

矢野 一雄*; 岡根 哲夫; 竹田 幸治; 山上 浩志; 藤森 淳; 西村 克彦*; 佐藤 清雄*

Physica B; Condensed Matter, 515, p.118 - 125, 2017/06

 被引用回数:1 パーセンタイル:81.49(Physics, Condensed Matter)

CeNi, GdNi、並びにCe$$_{0.2}$$Gd$$_{0.8}$$Niについて、構成元素の電子状態を軟X線吸収磁気円二色性(XMCD)測定により調べた。実験の結果、この系では、Gd 4f電子だけでなく、NI 3d電子並びにCe 4f電子も磁性も有しており、NI並びにCeの磁気モーメントはGdの磁気モーメントとは反平行にカップリングしていることがわかった。Ceの磁気モーメントは、いったん飽和した後、2T以上の磁場領域で減少していくが、これはスピンフリップ挙動と考えられる。サムルール解析からは、Gd 4f電子とNi 3d電子に小さい軌道磁気モーメントが残っていることが示唆された。

論文

Origin of robust nanoscale ferromagnetism in Fe-doped Ge revealed by angle-resolved photoemission spectroscopy and first-principles calculation

坂本 祥哉*; 若林 勇希*; 竹田 幸治; 藤森 伸一; 鈴木 博人*; 伴 芳祐*; 山上 浩志; 田中 雅明*; 大矢 忍*; 藤森 淳*

Physical Review B, 95(7), p.075203_1 - 075203_5, 2017/02

 被引用回数:4 パーセンタイル:43.58(Materials Science, Multidisciplinary)

Ge$$_{1-x}$$Fe$$_x$$ (Ge:Fe) shows ferromagnetic behavior up to a relatively high temperature of 210 K and hence is a promising material for spintronic applications compatible with Si technology. We have studied its underlying electronic structure by soft X-ray angle-resolved photoemission spectroscopy measurements and first-principles supercell calculation. We observed finite Fe 3$$d$$ components in the states at the Fermi level ($$Erm_F$$) in a wide region of momentum space, and the $$Erm_F$$ was located $$sim$$0.35 eV above the valence-band maximum of the host Ge. Our calculation indicates that the $$Erm_F$$ is also within the deep acceptor-level impurity band induced by the strong $$p$$-$$d$$($$t_2$$) hybridization. We conclude that the additional minority-spin $$d(e)$$ electron characteristic of the Fe$$^{2+}$$ state is responsible for the short-range ferromagnetic coupling between Fe atoms.

論文

Origin of the large positive magnetoresistance of Ge$$_{1-x}$$Mn$$_{x}$$ granular thin films

若林 勇希*; 秋山 了太*; 竹田 幸治; 堀尾 眞史*; 芝田 悟朗*; 坂本 祥哉*; 伴 芳祐*; 斎藤 祐児; 山上 浩志; 藤森 淳*; et al.

Physical Review B, 95(1), p.014417_1 - 014417_6, 2017/01

 被引用回数:6 パーセンタイル:30.1(Materials Science, Multidisciplinary)

Ge$$_{1_x}$$Mn$$_x$$ (GeMn) granular thin films are a unique and promising material for spintronic applications owing to their large positive magnetoresistance (MR). The microscopic origin of the MR has not yet been clarified. Here, we develop a method to separately investigate the magnetic properties of the nanoparticles and the matrix, utilizing the extremely high sensitivity of X-ray magnetic circular dichroism (XMCD) to the local magnetic state of each atom. We find that the MR ratio is proportional to the product of the magnetizations originating from the nanoparticles and the matrix. This result indicates that the spin-polarized holes in the nanoparticles penetrate into the matrix and that these holes undergo first order magnetic scattering by the paramagnetic Mn atoms in the matrix, which induces the large MR.

論文

Electronic structure of EuAl$$_4$$ studied by photoelectron spectroscopy

小畠 雅明; 藤森 伸一; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 小林 啓介*; 山上 浩志; 仲村 愛*; 辺土 正人*; 仲間 隆男*; et al.

Journal of the Physical Society of Japan, 85(9), p.094703_1 - 094703_6, 2016/09

 被引用回数:4 パーセンタイル:44.55(Physics, Multidisciplinary)

The electronic structure of a divalent $$mathrm{Eu}$$ compound EuAl$$_4$$, which shows the charge density wave transition at $$T_{mathrm{CDW}} = 140~mathrm{K}$$, was studied by the hard X-ray angle-integrated photoelectron spectroscopy (HAXPES) and the soft X-ray angle resolved photoelectron spectroscopy (ARPES). The valence band and core-level spectra obtained by the HAXPES are consistent with the divalent nature of Eu atoms in EuAl$$_4$$. Furthermore, the Fermi surface as well as the band structure in the vicinity of the Fermi Energy ($$E_{rm F}$$) of EuAl$$_4$$ are very similar to those of its isostructural divalent $$mathrm{Sr}$$ compound SrAl$$_4$$, which does not have $$4f$$ electrons. These suggest that Eu atoms are divalent in EuAl$$_4$$, and $$4f$$ electrons are completely localized with $$mathrm{Eu}~4f^7$$ electronic configuration in the ground state. The ARPES spectra measured along the $$Gamma$$-$$(Sigma)$$-Z high-symmetry line did not show significant temperature dependences above and below $$T_{mathrm{CDW}}$$ within the energy resolution of $$80-90~mathrm{meV}$$. Moreover, the Fermi surface mapping along the $$k_z$$ direction showed that both of EuAl$$_4$$ and SrAl$$_4$$ have highly three-dimensional electronic structures, suggesting that the nesting of Fermi surface is not straightforward. The Fermi surface and band structure of SrAl$$_4$$ were well explained by the band-structure calculation based on the local density approximation.

論文

Electronic structures of uranium compounds studied by soft X-ray photoelectron spectroscopy

藤森 伸一; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 芳賀 芳範; 山本 悦嗣; 大貫 惇睦

Journal of the Physical Society of Japan, 85(6), p.062001_1 - 062001_33, 2016/06

 被引用回数:14 パーセンタイル:14.76(Physics, Multidisciplinary)

The electronic structures of uranium-based compounds are studied by photoelectron spectroscopies with soft X-ray synchrotron radiation. Angle-resolved photoelectron spectroscopy with soft X-rays made it possible to directly observe their bulk band structures and Fermi surfaces. It is shown that the band structure and Fermi surface of itinerant compounds are quantitatively explained by the band-structure calculation treating all U 5$$f$$ electrons as being itinerant. Furthermore, the overall electronic structures of heavy Fermion compounds are also explained by the band-structure calculation although there exist some disagreements which might be originated from the electron correlation effect. This suggests that the itinerant description of U $$5f$$ states is an appropriate starting point for their description. The local electronic structures of uranium site are probed by the core-level photoelectron spectroscopy with soft X-rays. The comparisons of core-level spectra of these compounds with typical itinerant and localized compounds suggest that the local electronic structures of most of itinerant and heavy Fermion compounds are close to U 5$$f^3$$ configuration.

論文

Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

藤森 伸一; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 山本 悦嗣; 芳賀 芳範; 大貫 惇睦

Journal of Electron Spectroscopy and Related Phenomena, 208, p.105 - 110, 2016/04

 被引用回数:1 パーセンタイル:80.86(Spectroscopy)

最近のウラン化合物に対する軟X線光電子分光実験をレビューする。軟X線領域ではバルク5f電子状態が得られるため、ウラン化合物の電子状態を理解するうえで重要な研究手段である。また軟X線角度分解光電子分光によってバルクの5f電子状態を反映したバンド構造とフェルミ面を得ることが可能となった。近年の分野の進展についてレビューをする。

論文

Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge$$_{1-x}$$Fe$$_{x}$$

若林 勇希*; 坂本 祥哉*; 竹田 幸治; 石上 啓介*; 高橋 文雄*; 斎藤 祐児; 山上 浩志; 藤森 淳*; 田中 雅明*; 大矢 忍*

Scientific Reports (Internet), 6, p.23295_1 - 23295_9, 2016/03

AA2016-0503.pdf:1.66MB

 被引用回数:9 パーセンタイル:30.45(Multidisciplinary Sciences)

We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge$$_{1-x}$$Fe$$_{x}$$ (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3$$d$$ electrons are strongly hybridized with the Ge 4$$p$$ states, and have a large orbital magnetic moment relative to the spin magnetic moment, namely $$m_{rm orb}$$/$$m_{rm spin}$$ $$approx$$ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20 - 100K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature.

157 件中 1件目~20件目を表示