検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 187 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Electronic structure of the intermediate-valence compound EuNi$$_2$$P$$_2$$ studied by soft X-ray photoemission spectroscopy

川崎 郁斗; 小畠 雅明; 藤森 伸一; 竹田 幸治; 山上 浩志; 辺土 正人*; 仲間 隆男*; 大貫 惇睦*

Physical Review B, 104(16), p.165124_1 - 165124_8, 2021/10

 被引用回数:0

We carried out angle-resolved photoemission (ARPES) experiments using soft X rays to investigate the electronic structure of the intermediate valence compound EuNi$$_2$$P$$_2$$. Both the Eu$$^{2+}$$ and Eu$$^{3+}$$ components arising from the 4$$f^6$$ and 4$$f^5$$ final states were observed in the valence spectra, directly confirming an intermediate character of Eu ions. The three-dimensional band structure was studied by ARPES measurements, and we found that the ARPES spectra up to just below the Fermi level can well be explained by a calculation based on the density-functional theory for the non-4$$f$$ reference compound SrNi$$_2$$P$$_2$$. The heavy-fermion bands in EuNi$$_2$$P$$_2$$ are thus considered to be formed through the hybridization between the dispersive valence bands, which resemble those for SrNi$$_2$$P$$_2$$, and the Eu$$^{2+}$$ components located at the very vicinity of the Fermi level.

論文

Detecting halfmetallic electronic structures of spintronic materials in a magnetic field

藤原 秀紀*; 梅津 理恵*; 黒田 文彬*; 宮脇 淳*; 樫内 利幸*; 西本 幸平*; 永井 浩大*; 関山 明*; 入澤 明典*; 竹田 幸治; et al.

Scientific Reports (Internet), 11(1), p.18654_1 - 18654_9, 2021/09

 被引用回数:0

Band-gap engineering is one of the fundamental techniques in semiconductor technology. To fully utilize the spintronic material, it is essential to optimize the spin-dependent electronic structure in operando conditions by applying the magnetic and/or electric fields. Here we present a new spectroscopic technique to probe the spin-polarized electronic structures by using magnetic circular dichroism (MCD) in resonant inelastic soft X-ray scattering (RIXS) under an external magnetic field. Thanks to the spin-selective dipole-allowed transitions in the RIXS-MCD, we have successfully demonstrated the direct evidence of the perfectly spin-polarized electronic structures for the prototypical halfmetallic Heusller alloy, Co$$_{2}$$MnSi. The RIXS-MCD is a promising tool to probe the spin-dependent carriers and band-gap with element specific way induced in buried magnetic layers under operando conditions.

論文

Microstructures and interface magnetic moments in Mn$$_{2}$$VAl/Fe layered films showing exchange bias

窪田 崇秀*; 嶋田 雄介*; 土屋 朋生*; 吉川 智己*; 伊藤 啓太*; 竹田 幸治; 斎藤 祐児; 今野 豊彦*; 木村 昭夫*; 高梨 弘毅*

Nanomaterials (Internet), 11(7), p.1723_1 - 1723_11, 2021/07

 被引用回数:0 パーセンタイル:0(Chemistry, Multidisciplinary)

Heusler alloys exhibit various magnetic properties. In this study, a layered sample consisting of a Heusler alloy, Mn$$_{2}$$VAl and a ferromagnet, Fe, is selected as a material system exhibiting exchange bias. Although the fully ordered Mn$$_{2}$$VAl is known as a ferrimagnet, the Mn$$_{2}$$VAl/Fe layered structure exhibits exchange bias. The high-angle annular dark field STEM images demonstrated the formation of Mn$$_{2}$$VAl clusters with the L2$$_{1}$$ phase distributed only around the interface to the Fe layer in the sample. Furthermore, the antiferromagnetic coupling between the Mn- and Fe-moments were observed in element specific hysteresis loops measured using XMCD. The locally ordered L2$$_{1}$$ phase and antiferromagnetic Mn-moments in the Mn$$_{2}$$VAl layer are important for the exchange bias.

論文

Electronic structure of URu$$_2$$Si$$_2$$ in paramagnetic phase; Three-dimensional angle resolved photoelectron spectroscopy study

藤森 伸一; 竹田 幸治; 山上 浩志; 山本 悦嗣; 芳賀 芳範

Electronic Structure (Internet), 3(2), p.024008_1 - 024008_8, 2021/06

The three-dimensional (3D) electronic structure of the hidden order compound $$mathrm{URu_2Si_2}$$ in a paramagnetic phase was revealed using a 3D angle-resolved photoelectron spectroscopy where the electronic structure of the entire Brillouin zone is obtained by scanning both incident photon energy and detection angles of photoelectrons. The quasi-particle bands with enhanced contribution from the $$mathrm{U}~5f$$ state were observed near $$E_mathrm{F}$$, formed by the hybridization with the $$mathrm{Ru}~4d$$ states. The energy dispersion of the quasi-particle band is significantly depend on$$k_z$$, indicating that they inherently have a 3D nature. The band-structure calculation qualitatively explain the characteristic features of the band structure and Fermi surface although the electron correlation effect strongly renormalizes the quasi-particle bands. The 3D and strongly-correlated nature of the quasi-particle bands in$$mathrm{URu_2Si_2}$$ is an essential ingredient for modeling its hidden-order transition.

論文

Absence of ferromagnetism in MnBi$$_2$$Te$$_4$$/Bi$$_2$$Te$$_3$$ down to 6 K

深澤 拓朗*; 日下 翔太郎*; 角田 一樹; 橋爪 瑞葵*; 一ノ倉 聖*; 竹田 幸治; 出田 真一郎*; 田中 清尚*; 清水 亮太*; 一杉 太郎*; et al.

Physical Review B, 103(20), p.205405_1 - 205405_6, 2021/05

 被引用回数:0 パーセンタイル:0(Materials Science, Multidisciplinary)

We successfully fabricated a MnBi$$_2$$Te$$_4$$/Bi$$_2$$Te$$_3$$ heterostructure by incorporating Mn and Te inside the topmost quintuple layer of Bi$$_2$$Te$$_3$$, as unambiguously confirmed by LEED I-V scanning transmission electron microscopy measurements. The surface-state Dirac cone of the heterostructure showed little change compared to that of the pristine Bi$$_2$$Te$$_3$$ and X-ray magnetic circular dichroism measurements showed that the system was paramagnetic down to 5.6 K. These results are in contrast to the previous works on related materials that showed magnetic order around 10 K as well as theoretical predictions and suggests the intricacy of the magnetic properties of two-dimensional van der Waals magnets.

論文

Spin-orbit-induced Ising ferromagnetism at a van der Waals interface

松岡 秀樹*; Barnes, S. E.*; 家田 淳一; 前川 禎通; Bahramy, M. S.*; Saika, B. K.*; 竹田 幸治; 和達 大樹*; Wang, Y.*; 吉田 訓*; et al.

Nano Letters, 21(4), p.1807 - 1814, 2021/02

 被引用回数:1 パーセンタイル:72.02(Chemistry, Multidisciplinary)

Magnetocrystalline anisotropy, a key ingredient for establishing long-range order in a magnetic material down to the two-dimensional (2D) limit, is generally associated with spin-orbit interaction (SOI) involving a finite orbital angular momentum. Here we report strong out-of-plane magnetic anisotropy without orbital angular momentum, emerging at the interface between two different van der Waals (vdW) materials, an archetypal metallic vdW material NbSe$$_{2}$$ possessing Zeeman-type SOI and an isotropic vdW ferromagnet V$${}_5$$Se$${}_8$$. We found that the Zeeman SOI in NbSe$$_{2}$$ induces robust out-of-plane magnetic anisotropy in V$$_{5}$$Se$$_{8}$$ down to the 2D limit with a more than 2-fold enhancement of the transition temperature. We propose a simple model that takes into account the energy gain in NbSe$$_{2}$$ in contact with a ferromagnet, which naturally explains our observations. Our results demonstrate a conceptually new magnetic proximity effect at the vdW interface, expanding the horizons of emergent phenomena achievable in vdW heterostructures.

論文

Core-level photoelectron spectroscopy study of UTe$$_{2}$$

藤森 伸一; 川崎 郁斗; 竹田 幸治; 山上 浩志; 仲村 愛*; 本間 佳哉*; 青木 大*

Journal of the Physical Society of Japan, 90(1), p.015002_1 - 015002_2, 2021/01

 被引用回数:3 パーセンタイル:92.66(Physics, Multidisciplinary)

The valence state of $$mathrm{UTe}_2$$ was studied by core-level photoelectron spectroscopy. The main peak position of the $$mathrm{U}~4f$$ core-level spectrum of $$mathrm{UTe}_2$$ coincides with that of $$mathrm{UB}_2$$, which is anitinerant compound with a nearly $$5f^3$$ configuration. However, the main peak of $$mathrm{UTe}_2$$ is broader than that of$$mathrm{UB}_2$$, and satellite structures are observed in the higher binding energy side of the main peak, which are characteristics of mixed-valence uranium compounds. These results suggest that the $$mathrm{U}~5f$$ state in $$mathrm{UTe}_2$$ isin a mixed valence state with a dominant contribution from the itinerant$$5f^3$$ configuration.

論文

Direct observation of the magnetic ordering process in the ferromagnetic semiconductor Ga$$_{1-x}$$Mn$$_{x}$$As via soft X-ray magnetic circular dichroism

竹田 幸治; 大矢 忍*; Pham, N. H.*; 小林 正起*; 斎藤 祐児; 山上 浩志; 田中 雅明*; 藤森 淳*

Journal of Applied Physics, 128(21), p.213902_1 - 213902_11, 2020/12

 被引用回数:1 パーセンタイル:24.67(Physics, Applied)

In order to understand the mechanism of the ferromagnetism in Ga$$_{1-x}$$Mn$$_{x}$$As ((Ga,Mn)As), we have investigated the magnetic behavior on a microscopic level through systematic temperature ($$T$$) and magnetic-field ($$H$$) dependent soft X-ray magnetic circular dichroism (XMCD) experiments at the Mn $$L_mathrm{2,3}$$ absorption edges. The $$T$$ and $$H$$ dependences of XMCD intensities have been analyzed using a model consisting of the ferromagnetic (FM), paramagnetic, and superparamagnetic (SPM) components. Intriguingly, we have found a common behavior for the ferromagnetic ordering process in (Ga,Mn)As samples with different Mn concentrations and different Curie temperature ($$T_mathrm{C}$$) values. In particular, the SPM component develops well above $$T_mathrm{C}$$, indicating that local FM regions are formed well above $$T_mathrm{C}$$. The present findings indicate that the onset of ferromagnetic ordering is triggered by local electronic states around the substitutional Mn ions. Insight into the most representative ferromagnetic semiconductor, (Ga,Mn)As, will be an important step in understanding the mechanism of ferromagnetic ordering in various ferromagnetic semiconductor families.

論文

Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone

平原 徹*; Otrokov, M. M.*; 佐々木 泰佑*; 角田 一樹*; 友弘 雄太*; 日下 翔太郎*; 奥山 裕磨*; 一ノ倉 聖*; 小林 正起*; 竹田 幸治; et al.

Nature Communications (Internet), 11, p.4821_1 - 4821_8, 2020/09

 被引用回数:11 パーセンタイル:89.19(Multidisciplinary Sciences)

We fabricate a novel magnetic topological heterostructure Mn$$_{4}$$Bi$$_{2}$$Te$$_{7}$$/Bi$$_{2}$$Te$$_{3}$$ where multiple magnetic layers are inserted into the topmost quintuple layer of the original topological insulator Bi$$_{2}$$Te$$_{3}$$. A massive Dirac cone (DC) with a gap of 40-75 meV at 16 K is observed. By tracing the temperature evolution, this gap is shown to gradually decrease with increasing temperature and a blunt transition from a massive to a massless DC occurs around 200-250 K. Magnetic measurements show that there are two distinct Mn components in the system that corresponds to the two heterostructures; MnBi$$_{2}$$Te$$_{4}$$/Bi$$_{2}$$Te$$_{3}$$ is paramagnetic at 6 K while Mn$$_{4}$$Bi$$_{2}$$Te$$_{7}$$/Bi$$_{2}$$Te$$_{3}$$ is ferromagnetic with a negative hysteresis (critical temperature 20 K). This novel heterostructure is potentially important for future device applications.

論文

Unveiling spin-dependent unoccupied electronic states of Co$$_{2}$$MnGe (Ga) film via Ge (Ga) $$L_{2,3}$$ absorption spectroscopy

吉川 智己*; Antonov, V. N.*; 河野 嵩*; 鹿子木 将明*; 角田 一樹; 宮本 幸治*; 竹田 幸治; 斎藤 祐児; 後藤 一希*; 桜庭 裕弥*; et al.

Physical Review B, 102(6), p.064428_1 - 064428_7, 2020/08

 被引用回数:0 パーセンタイル:0(Materials Science, Multidisciplinary)

X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy were applied at the Ge (Ga) $$L_{2,3}$$ edge to unravel the spin-resolved unoccupied electronic states of Co$$_{2}$$MnGe (Ga). Complicated spectral features were observed in both XAS and XMCD spectra. For their interpretation, we compared the experimental XAS and XMCD spectra with the calculated Ge (Ga) 4$$s$$ and 4$$d$$ orbital partial density of states. The comparison enabled a qualitative explanation of the XMCD spectra as the difference between the majority and minority-spin unoccupied density of states summed over the 4$$s$$ and 4$$d$$ orbitals. Our finding provides a new approach to uncover the spin-split partial density of states above the Fermi level.

論文

Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi$$_{2}$$Te$$_{4}$$

Shikin, A. M.*; Estyunin, D. A.*; Klimovskikh, I. I.*; Filnov, S. O.*; Kumar, S.*; Schwier, E. F.*; 宮本 幸治*; 奥田 太一*; 木村 昭夫*; 黒田 健太*; et al.

Scientific Reports (Internet), 10, p.13226_1 - 13226_13, 2020/08

 被引用回数:13 パーセンタイル:91.8(Multidisciplinary Sciences)

Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator MnBi$$_{2}$$Te$$_{4}$$ and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures, light polarizations and photon energies. We have distinguished both large and reduced gaps at the DP in the ARPES dispersions, which remain open above the N$'{e}$el temperature of $$T_textrm{N}$$ = 24.5 K. We propose that the gap above $$T_textrm{N}$$ remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the large gap sample and apparently significantly reduced effective magnetic moment for the reduced gap sample.

論文

Electronic structure of trivalent compound EuPd$$_3$$ studied by soft X-ray angle-resolved photoemission spectroscopy

川崎 郁斗; 小畠 雅明; 藤森 伸一; 竹田 幸治; 山上 浩志; 仲村 愛*; 伊覇 航*; 辺土 正人*; 仲間 隆男*; 大貫 惇睦*

Journal of the Physical Society of Japan, 89(4), p.044704_1 - 044704_6, 2020/04

 被引用回数:2 パーセンタイル:32.18(Physics, Multidisciplinary)

EuPd$$_3$$ is a rare Eu-based compound, whose Eu ions are in a trivalent state. The electronic structure of EuPd$$_3$$ was investigated by angle-resolved photoemission spectroscopy (ARPES) using soft X rays. Eu$$^{3+}$$ components arising from the 4f$$^5$$ final state multiplet were clearly observed in the valence spectra, and no Eu$$^{2+}$$ components were observed within an experimental accuracy, confirming a robust Eu$$^{3+}$$ state. The band structure and Fermi surfaces revealed by ARPES measurements were compared to the band structure calculations based on the density-functional theory for LaPd$$_3$$ andYPd$$_3$$. We found that the calculation for LaPd$$_3$$ provides a better description for our ARPES results. The effective electron masses estimated from the ARPES spectra near the Fermi level are in good agreement with the corresponding cyclotron effective masses in previous de Haas-van Alphen experiments.

論文

Manipulation of saturation magnetization and perpendicular magnetic anisotropy in epitaxial Co$$_{x}$$Mn$$_{4-x}$$N films with ferrimagnetic compensation

伊藤 啓太*; 安富 陽子*; Zhu, S.*; Nurmamat, M.*; 田原 昌樹*; 都甲 薫*; 秋山 了太*; 竹田 幸治; 斎藤 祐児; 小口 多美夫*; et al.

Physical Review B, 101(10), p.104401_1 - 104401_8, 2020/03

 被引用回数:3 パーセンタイル:44.66(Materials Science, Multidisciplinary)

Spintronics devices utilizing a magnetic domain wall motion have attracted increasing attention, and ferrimagentic materials with almost compensated magnetic moments are highly required to realize the fast magnetic domain wall motion. Here, we report a key function for this purpose in anti-perovskite Co$$_{x}$$Mn$$_{4-x}$$N films. Perpendicular magnetization emerges for $$0.8 leq x$$, and the saturation magnetization reaches a minimum value at $$x = 0.8$$.

論文

最先端放射光ナノ計測・解析共用拠点(日本原子力研究開発機構)

米田 安宏; 吉越 章隆; 竹田 幸治; 塩飽 秀啓; 松村 大樹; 菖蒲 敬久; 田村 和久

まてりあ, 58(12), p.763 - 769, 2019/12

文部科学省ナノプラットフォーム委託事業において、微細構造解析プラットフォームに属する各実施機関の提供している装置紹介である。

論文

Intrinsic 2D ferromagnetism in V$$_{5}$$Se$$_{8}$$ epitaxial thin films

中野 匡規*; Wang, Y.*; 吉田 訓*; 松岡 秀樹*; 真島 裕貴*; 池田 啓祐*; 平田 靖透*; 竹田 幸治; 和達 大樹*; 小濱 芳允*; et al.

Nano Letters, 19(12), p.8806 - 8810, 2019/12

 被引用回数:22 パーセンタイル:91.07(Chemistry, Multidisciplinary)

The discoveries of intrinsic ferromagnetism in atomically thin van der Waals crystals have opened a new research field enabling fundamental studies on magnetism at two-dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. Here we demonstrate that V$$_{5}$$Se$$_{8}$$ epitaxial thin films grown by molecular-beam epitaxy exhibit emergent 2D ferromagnetism with intrinsic spin polarization of the V 3d electrons although the bulk counterpart is originally antiferromagnetic. Moreover, thickness-dependence measurements reveal that this newly developed 2D ferromagnet could be classified as an itinerant 2D Heisenberg ferromagnet with weak magnetic anisotropy.

論文

Electronic structure of UTe$$_2$$ studied by photoelectron spectroscopy

藤森 伸一; 川崎 郁斗; 竹田 幸治; 山上 浩志; 仲村 愛*; 本間 佳哉*; 青木 大*

Journal of the Physical Society of Japan, 88(10), p.103701_1 - 103701_5, 2019/10

 被引用回数:10 パーセンタイル:80.36(Physics, Multidisciplinary)

The electronic structure of the unconventional superconductor $$mathrm{UTe_2}$$ was studied by resonant photoelectron spectroscopy (RPES) and angle-resolved photoelectron spectroscopy (ARPES) with soft X-ray synchrotron radiation. The partial $$mathrm{U}~5f$$ density of states of $$mathrm{UTe_2}$$ were imaged by the $$mathrm{U}~4d$$ - $$5f$$ RPES and it was found that the $$mathrm{U}~5f$$ state has an itinerant character, but there exists an incoherent peak due to the strong electron correlation effects. Furthermore, an anomalous admixture of the $$mathrm{U}~5f$$ states into the $$mathrm{Te}~5p$$ bands was observed at a higher binding energy, which cannot be explained by band structure calculations. On the other hand, the band structure of $$mathrm{UTe_2}$$ was obtained by ARPES and its overall band structure were mostly explained by band structure calculations. These results suggest that the $$mathrm{U}~5f$$ states of $$mathrm{UTe_2}$$ have itinerant but strongly-correlated nature with enhanced hybridization with the $$mathrm{Te}~5p$$ states.

論文

Element-specific density of states of Co$$_{2}$$MnGe revealed by resonant photoelectron spectroscopy

河野 嵩*; 鹿子木 将明*; 吉川 智己*; Wang, X.*; 角田 一樹*; 宮本 幸治*; 室 隆桂之*; 竹田 幸治; 斎藤 祐児; 後藤 一希*; et al.

Physical Review B, 100(16), p.165120_1 - 165120_6, 2019/10

 被引用回数:2 パーセンタイル:22.92(Materials Science, Multidisciplinary)

Resonant photoelectron spectroscopy at the Co and Mn 2${it p}$ core absorption edges of half-metallic Co$$_{2}$$MnGe has been performed to determine the element-specific density of states (DOS). A significant contribution of the Mn 3${it d}$ partial DOS near the Fermi level ($$E_{F}$$) was clarified by measurement at the Mn 2${it p}$ absorption edge. Further analysis by first-principles calculation revealed that it has $$t_{2g}$$ symmetry, which must be responsible for the electrical conductivity along the line perpendicular to the film plane. The dominant normal Auger contribution observed at the Co 2${it p}$ absorption edge indicates delocalization of photoexcited Co 3${it d}$ electrons. The difference in the degrees of localization of the Mn 3${it d}$ and Co 3${it d}$ electrons in Co$$_{2}$$MnGe is explained by the first-principles calculation.

論文

Magnetic-impurity-induced modifications to ultrafast carrier dynamics in the ferromagnetic topological insulators Sb$$_{2-x}$$V$$_{x}$$Te$$_{3}$$

角田 一樹*; 鹿子木 将明*; Reimann, J.*; Nurmamat, M.*; 後藤 伸一*; 竹田 幸治; 斎藤 祐児; Kokh, K. A.*; Tereshchenko, O. E.*; G$"u$dde, J.*; et al.

New Journal of Physics (Internet), 21(9), p.093006_1 - 093006_8, 2019/09

 被引用回数:6 パーセンタイル:67.47(Physics, Multidisciplinary)

We systematically investigate the magnetic, structural and electronic properties and the ultrafast carrier dynamics in a series of V-doped Sb$$_{2}$$Te$$_{3}$$ samples of composition Sb$$_{2-x}$$V$$_{x}$$Te$$_{3}$$ with x = 0, 0.015 and 0.03. Element specific X-ray magnetic circular dichroism signifies that the ferromagnetism of V-doped Sb$$_{2}$$Te$$_{3}$$ is governed by the p-d hybridization between the host carrier and the magnetic dopant. Time- and angle-resolved photoemission spectroscopy has revealed that the V impurity induced states underlying the topological surface state (TSS) add scattering channels that significantly shorten the duration of transient surface electrons down to 100 fs scale. This is in a sharp contrast to the prolonged duration reported for pristine samples though the TSS is located inside the bulk energy gap of the host in either magnetic or non-magnetic cases. It implies the presence of a mobility gap in the bulk energy gap region of the host material.

論文

Electronic states of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ studied by soft X-ray photoemission spectroscopy

川崎 郁斗; 藤森 伸一; 竹田 幸治; 山上 浩志; 伊覇 航*; 辺土 正人*; 仲間 隆男*; 大貫 惇睦*

Physical Review B, 100(3), p.035111_1 - 035111_8, 2019/07

 被引用回数:6 パーセンタイル:51.19(Materials Science, Multidisciplinary)

We have carried out angle-integrated photoemission spectroscopy (AIPES) and angle-resolved photoemission spectroscopy (ARPES) experiments using soft X-rays on single crystals of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ grown by the Bridgman method to investigate their electronic structures. The AIPES results showed that the Eu ions in EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ are in a divalent state and a nearly trivalent state, respectively, in accord with the previously reported magnetic properties. The three-dimensional band structures and shapes of the Fermi surfaces of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ were studied by ARPES measurements. We found that the band structures near the Fermi level and Fermi surfaces of EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$ are very different from each other and are well reproduced by the band structure calculations based on density-functional theory for SrCu$$_2$$Ge$$_2$$ and YCu$$_2$$Si$$_2$$. This suggests that a charge transfer from the localized 4$$f$$ states into the valence bands is responsible for the difference in the electronic states between EuCu$$_2$$Ge$$_2$$ and EuCu$$_2$$Si$$_2$$.

論文

Electronic structure of the high-$$T_{rm C}$$ ferromagnetic semiconductor (Ga,Fe)Sb; X-ray magnetic circular dichroism and resonance photoemission spectroscopy studies

坂本 祥哉*; Tu, N. T.*; 竹田 幸治; 藤森 伸一; Hai, P. N.*; Anh, L. D.*; 若林 勇希*; 芝田 悟朗*; 堀尾 眞史*; 池田 啓祐*; et al.

Physical Review B, 100(3), p.035204_1 - 035204_8, 2019/07

The electronic structure and the magnetism of the ferromagnetic semiconductor (Ga,Fe)Sb, whose Curie temperature $$T_{rm C}$$ can exceed room temperature, were investigated by means of X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and resonance photoemission spectroscopy (RPES). The line-shape analyses of the XAS and XMCD spectra suggest that the ferromagnetism is of intrinsic origin. The orbital magnetic moments deduced using XMCD sum rules were found to be large, indicating that there is a considerable 3$$d^{6}$$ contribution to the ground state of Fe. From RPES, we observed a strong dispersive Auger peak and nondispersive resonantly enhanced peaks in the valence-band spectra. The latter is a fingerprint of the correlated nature of Fe 3$$d$$ electrons, whereas the former indicates their itinerant nature. It was also found that the Fe 3$$d$$ states have a finite contribution to the density of states at the Fermi energy. These states, presumably consisting of majority-spin $$p$$-$$d$$ hybridized states or minority-spin e states, would be responsible for the ferromagnetic order in this material.

187 件中 1件目~20件目を表示