Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yokochi, Masaru; Sasaki, Shunichi; Yanagibashi, Futoshi; Asada, Naoki; Komori, Tsuyoshi; Fujieda, Sadao; Suzuki, Hisanori; Takeuchi, Kenji; Uchida, Naoki
Nihon Hozen Gakkai Dai-20-Kai Gakujutsu Koenkai Yoshishu, p.1 - 4, 2024/08
Tokai Reprocessing Plant, which is shifted to decommissioning stage, stores large amount of high-level radioactive liquid waste (HLLW) generated by reprocessing of spent nuclear fuels in High-level Active Waste facility (HAW). Radioactive risk related to HLLW has been concentrated in HAW until the completion of vitrification. Natural disasters such as earthquake may damage cooling function of HAW. Therefore, HAW must improve earthquake resistance, as exchanging the ground around HAW facility and pipe trench by concrete. This earthquake resistance construction starts from July of 2020 and completed in March 2024. This report summarizes the construction work and describes the inspection results after the construction.
Asada, Naoki; Sasaki, Shunichi; Rachi, Reona; Komori, Tsuyoshi; Suzuki, Hisanori; Takeuchi, Kenji; Uchida, Naoki
Nihon Hozen Gakkai Dai-20-Kai Gakujutsu Koenkai Yoshishu, p.5 - 8, 2024/08
no abstracts in English
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:21 Percentile:95.78(Multidisciplinary Sciences)no abstracts in English
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Times Cited Count:3 Percentile:69.58(Astronomy & Astrophysics)Detailed -ray spectroscopy of the exotic neon isotope
Ne has been performed using the one-neutron removal reaction from
Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for
Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Sumi, Kazumichi*; Iijima, Toru*; Inami, Kenji*; Sue, Yuki*; Yotsuzuka, Mai*; Ego, Hiroyasu*; Otani, Masashi*; Saito, Naohito*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; et al.
Journal of Physics; Conference Series, p.012038_1 - 012038_6, 2022/07
The disk-loaded structures (DLS) in the muon LINAC are under development for the J-PARC muon g-2/EDM experiment. Four DLSs with an accelerating gradient of 20 MV/m take charge of muon acceleration from 40 MeV to 212 MeV, which corresponds to 70% to 94% of the speed of light. The quasi-constant gradient type TM01-2/3 mode DLSs with gradually varying disk spacing was designed and it was confirmed that the cumulative phase slip due to the mismatch between muon and phase velocity can be suppressed to less than 2 degrees at the frequency of 2592 MHz. In addition, the optimum synchronous phase and the lattice were investigated to satisfy the requirements of the total emittance less than 1.5
mm mrad and the momentum spread less than 0.1% in RMS.
Omori, Kazuki; Yamauchi, Sho; Yanagibashi, Futoshi; Sasaki, Shunichi; Wada, Takuya; Suzuki, Hisanori; Domura, Kazuyuki; Takeuchi, Kenji
Nihon Hozen Gakkai Dai-18-Kai Gakujutsu Koenkai Yoshishu, p.245 - 248, 2022/07
Tokai Reprocessing Plant (TRP), which is shifted to decommissioning stage, stores large amount of high-level radioactive liquid waste (HLLW). Although TRP is implementing vitrification of HLLW to reduce the risks related to HLLW storage, additional 20 years are required to complete vitrification of HLLW. Therefore, TRP is implementing safety countermeasure related to seismic resistance of HLLW storage facility as one of the top priorities. The results of the seismic evaluation indicate that although the facility itself is seismically resistant, there is a risk of insufficient binding force acting between the facility and the surrounding ground. Thus, replacement of the surrounding ground with concrete is performed. Since the countermeasures, to protect existing buries structure and coordinate with the other construction projects around the site, are required, the dedicated team was setup to handle the process and safety management of the concrete replacement construction.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Niwa, Masakazu; Amano, Kenji; Takeuchi, Ryuji; Shimada, Koji
Groundwater Monitoring & Remediation, 41(3), p.41 - 50, 2021/00
Times Cited Count:2 Percentile:12.22(Water Resources)Identification of water-conducting fractures is important for the safety assessment of underground projects in crystalline rocks at geological disposal sites. We applied a portable methane gas analyzer by wavelength-scanned cavity ring-down spectroscopy to detect the water-conducting fractures in an underground tunnel excavated in granite with CH-rich groundwater. Two approaches were taken to obtain the profile of CH
concentration along the gallery walls: (1) Scan by walking at the speed of 0.5 m/s and (2) monitoring for 30 s at 0.5 or 1-m intervals. In the Scan by walking approach, the peaks of the CH
concentration corresponded well with the occurrence of high water flow rate fractures. Thus, this method is useful for rapid identification of major water-conducting fractures. Monitoring at constant intervals takes more time than the Scan by walking approach; however, this method can largely detect occurrences of fractures with low fluid fluxes.
Nakano, Masanao; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Okura, Takehisa; Kuramochi, Akihiko; Kawasaki, Masatsugu; Takeuchi, Erina; Fujii, Yutaka*; Jinno, Tsukasa*; et al.
Hoken Butsuri (Internet), 55(2), p.102 - 109, 2020/06
After the Fukushima-Daiichi Nuclear Power Station (1F) Accident in March 2011, the increase was significantly observed in a part of the result of the environmental radiation monitoring in Ibaraki prefecture. "The review meeting of the environmental effect from 1F accident" was established to discuss technically the fluctuation of monitoring data. The review meeting collected the monitoring data from the four nuclear operators, and discussed a fluctuating trend, Cs/
Cs activity ratio, and so on. In this report, the results of the dose rate and
Cs in fallout, surface soil, flatfish and seabed sediment are introduced. Also the problem solving in the review meeting is introduced.
Sue, Yuki*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Inami, Kenji*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kitamura, Ryo; et al.
Physical Review Accelerators and Beams (Internet), 23(2), p.022804_1 - 022804_7, 2020/02
Times Cited Count:2 Percentile:21.81(Physics, Nuclear)A destructive monitor to measure the longitudinal bunch width of a low-energy and low-intensity muon beam was developed. This bunch-width monitor (BWM) employed microchannel plates to detect a single muon with high time resolution. In addition, constant-fraction discriminators were adopted to suppress the time-walk effect. The time resolution was measured to be 65 ps in rms using a picosecond-pulsed laser. This resolution satisfied the requirements of the muon linac of the J-PARC E34 experiment. We measured the bunch width of negative-muonium ions accelerated with a radio-frequency quadrupole using the BWM. The bunch width was successfully measured to be 54
11 ns, which is consistent with the simulation.
Sue, Yuki*; Iijima, Toru*; Inami, Kenji*; Yotsuzuka, Mai*; Iinuma, Hiromi*; Nakazawa, Yuga*; Otani, Masashi*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Futatsukawa, Kenta*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.55 - 60, 2019/07
The result of bunch size measurement of muon accelerated by RFQ up to 89 keV is presented in this paper. A four-stage muon linac for precise measurement of muon property is under construction in the J-PARC. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured in 2017. As one of the remaining issues for the beam diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the microchannel plate is under development. The time resolution of the monitor aims to be around 30 to 40 ps corresponding to 1% of a period of an operating frequency of the accelerator, which is 324 MHz. On November 2018, the bunch size of accelerated negative muonium ion of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The measured bunch width is ns, which is consistent with the simulation.
Sue, Yuki*; Iijima, Toru*; Inami, Kenji*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Otani, Masashi*; Hasegawa, Kazuo; et al.
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.37 - 40, 2019/06
The result of bunch size measurement of muon accelerated by RFQ up to 89 keV is presented in this paper. A four-stage muon linac for precise measurement of muon property is under construction in the J-PARC. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured in 2017. As one of the remaining issues for the beam diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the microchannel plate is under development. The time resolution of the monitor aims to be around 30 to 40 ps corresponding to 1% of a period of an operating frequency of the accelerator, which is 324 MHz. On November 2018, the bunch size of accelerated negative muonium ion of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The measured bunch width is ns, which is consistent with the simulation.
Toda, Hiroyuki*; Yamaguchi, Masatake; Matsuda, Kenji*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Su, H.*; Fujihara, Hiro*; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; et al.
Tetsu To Hagane, 105(2), p.240 - 253, 2019/02
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)no abstracts in English
Takahatake, Yoko; Ambai, Hiromu; Sano, Yuichi; Takeuchi, Masayuki; Koizumi, Kenji; Sakamoto, Kan*; Yamashita, Shinichiro
Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 9 Pages, 2018/10
The corrosion behaviour of FeCrAl-ODS steels for the accident tolerant fuel cladding of LWRs were investigated in nitric acid solutions for the reprocessing process of spent fuels. The corrosion tests were carried out at 60C, 80
C and the boiling point of the solutions, and the specimens were then analysed by XPS. The corrosion remarkably progressed at the boiling point, and the highest corrosion rate was 0.22 mm/y. In the oxide film, the atomic concentration of Fe was lower, than that in the base material, and those of Cr and Al were higher. The results show that the corrosion of FeCrAl-ODS steels in hot nitric acid solution is not severe because of the high corrosion resistance of the oxide film formed on the material; hence, the corrosion resistance of the new cladding materials in the dissolution process of spent fuel is acceptable for reprocessing operations.
Takayasu, Kentaro; Onuki, Kenji*; Kawamoto, Koji*; Takayama, Yusuke; Mikake, Shinichiro; Sato, Toshinori; Onoe, Hironori; Takeuchi, Ryuji
JAEA-Technology 2017-011, 61 Pages, 2017/06
The Groundwater REcovery Experiment in Tunnel (GREET) was put into effect as development of drift backfilling technologies. This test was conducted by making the Closure Test Drift (CTD) recovered with water after carrying out a plug around 40m distance from northern edge face of horizontal tunnel of depth 500m, for the purpose of investigation of recovering process of rock mass and groundwater under the influence of excavation of tunnel. This report presents the efforts of backfilling investigation using bentonite composite soil and execution of backfilling into borehole pits excavated in the CTD which were carried out in fiscal 2014 as a part of GREET, and succeeding observation results inside pits from September 2014 to March 2016.
Hama, Katsuhiro; Mikake, Shinichiro; Ishibashi, Masayuki; Sasao, Eiji; Kuwabara, Kazumichi; Ueno, Tetsuro; Onuki, Kenji*; Beppu, Shinji; Onoe, Hironori; Takeuchi, Ryuji; et al.
JAEA-Review 2015-024, 122 Pages, 2015/11
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technical basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase III, as the Phase II was concluded for a moment with the completion of the excavation of horizontal tunnels at GL-500m level in February 2014. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2014.
Hasegawa, Takashi; Kawamoto, Koji; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Iwatsuki, Teruki; Sato, Toshinori
JAEA-Technology 2015-011, 135 Pages, 2015/07
The geological, hydraulic and geochemical data such as rock mass classification, groundwater inflow points and the volume, water pressure, and hydraulic conductivity were obtained from boreholes (13MI3813MI44) in the -500m Access/Research Gallery-North of Mizunami Underground Research laboratory (MIU). In addition to data acquisition, monitoring systems were installed to observe hydrochemical changes in the groundwater, and rock strain during and after the groundwater recovery experiment.
Sakamoto, Atsushi; Sano, Yuichi; Takeuchi, Masayuki; Okamura, Nobuo; Koizumi, Kenji
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.
JAEA-Review 2014-038, 137 Pages, 2014/12
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Onoe, Hironori; Iwatsuki, Teruki; Saegusa, Hiromitsu; Onuki, Kenji; Takeuchi, Ryuji; Sanada, Hiroyuki; Ishibashi, Masayuki; Sato, Toshinori
Proceedings of 8th Asian Rock Mechanics Symposium (ARMS-8) (USB Flash Drive), 10 Pages, 2014/10
The selection of a geological disposal site for high-level radioactive waste (HLW) will be done taking into consideration performance of the geological environment. Geological environments would likely be influenced for several decades by changes due to the construction and operation of a large underground facility such as a HLW repository. Therefore, the post-closure recovery of the geological environment after backfilling of a facility is an important aspect for the safety assessment of geological disposal of HLW. With a focus on the hydraulic pressure and hydrochemical recovery processes around underground galleries in fractured crystalline rock, the groundwater recovery experiment will be conducted at the Mizunami Underground Research Laboratory to evaluate the natural groundwater and hydrochemical recovery of the rock mass. This paper provides an outline of the groundwater recovery experiment plan and progress of the supporting field investigations.