Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sun, X. H.*; Wang, H.*; Otsu, Hideaki*; Sakurai, Hiroyoshi*; Ahn, D. S.*; Aikawa, Masayuki*; Fukuda, Naoki*; Isobe, Tadaaki*; Kawakami, Shunsuke*; Koyama, Shumpei*; et al.
Physical Review C, 101(6), p.064623_1 - 064623_12, 2020/06
Times Cited Count:7 Percentile:57.01(Physics, Nuclear)The spallation and fragmentation reactions of Xe induced by proton, deuteron and carbon at 168 MeV/nucleon were studied at RIKEN Radioactive Isotope Beam Factory via the inverse kinematics technique. The cross sections of the lighter products are larger in the carbon-induced reactions due to the higher total kinetic energy of carbon. The energy dependence was investigated by comparing the newly obtained data with previous results obtained at higher reaction energies. The experimental data were compared with the results of SPACS, EPAX, PHITS and DEURACS calculations. These data serve as benchmarks for the model calculations.
Lokotko, T.*; Leblond, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Poves, A.*; Nowacki, F.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Authelet, G.*; et al.
Physical Review C, 101(3), p.034314_1 - 034314_7, 2020/03
Times Cited Count:12 Percentile:72.23(Physics, Nuclear)The structures of the neutron-rich Co isotopes were investigated via (
) knockout reactions at the Radioactive Isotope Beam Factory, RIKEN. Level schemes were reconstructed using the
coincidence technique, with tentative spin-parity assignments based on the measured inclusive and exclusive cross sections. Comparison with shell-model calculations suggests coexistence of spherical and deformed shapes at low excitation energies in the
Co isotopes.
Takeuchi, Ryuji; Iwatsuki, Teruki; Matsui, Hiroya; Ikeda, Koki; Mikake, Shinichiro; Hama, Katsuhiro; Iyatomi, Yosuke; Matsuoka, Toshiyuki; Sasao, Eiji
JAEA-Review 2019-014, 30 Pages, 2019/10
The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency(JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock(granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important remaining issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technology". The R&D on three remaining important issues have been carrying out in the MIU Project. This report summarizes the R&D activities planned for fiscal year 2019 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase.
Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:9 Percentile:54.77(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.
Onoe, Hironori; Kosaka, Hiroshi*; Matsuoka, Toshiyuki; Komatsu, Tetsuya; Takeuchi, Ryuji; Iwatsuki, Teruki; Yasue, Kenichi
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 26(1), p.3 - 14, 2019/06
In this study, it is focused on topographic changes due to uplift and denudation, also climate perturbations, a method which is able to assess the long-term variability of groundwater flow conditions using the coefficient variation based on some steady-state groundwater flow simulation results was developed. Spatial distribution of long residence time area which is not much influenced due to long-term topographic change and recharge rate change during the past one million years was able to estimate through the case study of the Tono area, Central Japan. By applying this evaluation method, it is possible to identify the local area that has low variability of groundwater flow conditions due to topographic changes and climate perturbations from the regional area quantitatively and spatially.
Elekes, Z.*; Kripk,
*; Sohler, D.*; Sieja, K.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Doornenbal, P.*; Obertelli, A.*; Authelet, G.*; Baba, Hidetada*; et al.
Physical Review C, 99(1), p.014312_1 - 014312_7, 2019/01
Times Cited Count:12 Percentile:71.90(Physics, Nuclear)The nuclear structure of the Ni nucleus was investigated by (
,
) reaction using a NaI(Tl) array to detect the deexciting prompt
rays. A new transition with an energy of 2227 keV was identified by
and
coincidences. Our shell-model calculations using the Lenzi, Nowacki, Poves, and Sieja interaction produced good candidates for the experimental proton hole states in the observed energy region, and the theoretical cross sections showed good agreement with the experimental values. Although we could not assign all the experimental states to the theoretical ones unambiguously, the results are consistent with a reasonably large Z = 28 shell gap for nickel isotopes in accordance with previous studies.
Steppenbeck, D.*; Takeuchi, Satoshi*; Aoi, Nori*; Doornenbal, P.*; Matsushita, Masafumi*; Wang, H.*; Baba, Hidetada*; Go, Shintaro*; Holt, J. D.*; Lee, J.*; et al.
Physical Review C, 96(6), p.064310_1 - 064310_10, 2017/12
Times Cited Count:20 Percentile:80.90(Physics, Nuclear)no abstracts in English
Shand, C. M.*; Podolyk, Zs.*; G
rska, M.*; Doornenbal, P.*; Obertelli, A.*; Nowacki, F.*; Otsuka, T.*; Sieja, K.*; Tostevin, J. A.*; Tsunoda, T.*; et al.
Physics Letters B, 773, p.492 - 497, 2017/10
Times Cited Count:28 Percentile:87.49(Astronomy & Astrophysics)Ishii, Eiichi; Matsuoka, Toshiyuki; Saegusa, Hiromitsu; Takeuchi, Ryuji
Nihon Oyo Chishitsu Gakkai Heisei-27-Nendo Kenkyu Happyokai Koen Rombunshu, p.135 - 136, 2015/09
no abstracts in English
Steppenbeck, D.*; Takeuchi, Satoshi*; Aoi, Nori*; Doornenbal, P.*; Matsushita, Masafumi*; Wang, H.*; Utsuno, Yutaka; Baba, Hidetada*; Go, Shintaro*; Lee, J.*; et al.
Physical Review Letters, 114(25), p.252501_1 - 252501_6, 2015/06
Times Cited Count:49 Percentile:88.01(Physics, Multidisciplinary)The neutron-rich nucleus Ar is produced by the fragmentation reactions of
Ca,
Sc, and
Ti at the RIBF facility in RIKEN, and its deexcited
rays are observed for the first time. The first
level in
Ar is identified to lie at 1178(18)keV from the most intense
-ray spectra. This experimental data, together with the systematics of the
levels for surrounding nuclei, is analyzed with large-scale shell-model calculations. Consequently, the
sub-shell gap in
Ar is equivalent to that of
Ca, thus making the
level in
Ar higher than that of
Ar. The shell-model calculation also predicts that the
sub-shell gap enhances in going from Ca to Ar, which will be verified by forthcoming experiments for
Ar.
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.
JAEA-Review 2014-038, 137 Pages, 2014/12
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Kobayashi, Nobuyuki*; Nakamura, Takashi*; Kondo, Yosuke*; Tostevin, J. A.*; Utsuno, Yutaka; Aoi, Nori*; Baba, Hidetada*; Barthelemy, R.*; Famiano, M. A.*; Fukuda, Naoki*; et al.
Physical Review Letters, 112(24), p.242501_1 - 242501_5, 2014/06
Times Cited Count:101 Percentile:94.62(Physics, Multidisciplinary)no abstracts in English
Nakamura, Takashi*; Kobayashi, Nobuyuki*; Kondo, Yosuke*; Sato, Yoshiteru*; Tostevin, J. A.*; Utsuno, Yutaka; Aoi, Nori*; Baba, Hidetada*; Fukuda, Naoki*; Gibelin, J.*; et al.
Physical Review Letters, 112(14), p.142501_1 - 142501_5, 2014/04
Times Cited Count:71 Percentile:91.67(Physics, Multidisciplinary)no abstracts in English
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.
JAEA-Review 2013-050, 114 Pages, 2014/02
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Sasao, Eiji; Iwatsuki, Teruki; Takeuchi, Ryuji; Matsuoka, Toshiyuki; Tanno, Takeo*; Onoe, Hironori; Ogata, Nobuhisa; et al.
JAEA-Review 2013-044, 37 Pages, 2014/01
The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host crystalline rock at Mizunami City in Gifu, central Japan. The project consists of major research areas, "Geoscientific Research", and proceeds in three overlapping phases, "Phase I: Surface-based investigation Phase", "Phase II: Construction Phase" and "Phase III: Operation Phase". The present report summarizes the research and development activities planned for fiscal year 2013 based on the MIU Master Plan updated in 2010.
Hama, Katsuhiro; Sato, Toshinori; Sasao, Eiji; Iwatsuki, Teruki; Kunimaru, Takanori; Matsuoka, Toshiyuki; Takeuchi, Ryuji; Onoe, Hironori; Mikake, Shinichiro
JAEA-Data/Code 2013-010, 58 Pages, 2013/10
JAEA at Tono Geoscience Center is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment to construct scientific and technological basis for geological disposal of High-level Radioactive Waste. The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Phase II and Phase III. In Phase II, adequacy of geological environment model is evaluated. Applicability and feasibility assessment of various elemental technologies adopted to characterize geological environment in Phase I will be evaluated. Furthermore, from a design, construction and safety assessment point of view, a series of evaluation procedures are organized and Geosynthesis Data Flow Diagram is established. This is the integrated data flow from investigation through modeling and analysis. It proposes the rational combinations of investigation items which make the investigation results reflect the safety assessment and designing. In this sense, Geosynthesis Data Flow Diagram indicates the rational framework, from investigation to modeling and analysis, for achieving individual goals and tasks. This report summarizes the Geosynthesis Data Flow Diagram optimized during Phase II investigation. The Geosynthesis Data Flow Diagram will be revised based on the research progress.
Steppenbeck, D.*; Takeuchi, Satoshi*; Aoi, Nori*; Doornenbal, P.*; Matsushita, Masafumi*; Wang, H.*; Baba, Hidetada*; Fukuda, Naoki*; Go, Shintaro*; Homma, Michio*; et al.
Nature, 502(7470), p.207 - 210, 2013/10
Times Cited Count:311 Percentile:99.78(Multidisciplinary Sciences)no abstracts in English
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.
JAEA-Review 2013-018, 169 Pages, 2013/09
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.
JAEA-Review 2012-028, 31 Pages, 2012/08
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.
JAEA-Review 2012-020, 178 Pages, 2012/06
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.