Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 155

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fabrication progress of the prototype spoke cavity for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Domae, Takeshi*

Journal of Physics; Conference Series, 2687(5), p.052008_1 - 052008_6, 2024/01

Journal Articles

Validation of the $$^{10}$$Be ground-state molecular structure using $$^{10}$$Be($$p,palpha$$)$$^{6}$$He triple differential reaction cross-section measurements

Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi$'e$, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.

Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11

The cluster structure of the neutron-rich isotope $$^{10}$$Be has been probed via the ($$p,palpha$$) reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-R$"o$pke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the $$^{10}$$Be ground-state as a rather compact nuclear molecule.

Journal Articles

Design of the Low energy beam transport line for the JAEA-ADS linac

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.545 - 549, 2023/11

The Japan Atomic Energy Agency (JAEA) is proposing a 30-MW proton linear accelerator (linac) for the application of accelerator-driven subcritical system (ADS) technology to achieve nuclear waste transmutation. A major challenge for the JAEA-ADS linac is the efficient transport of a 35 keV proton beam from the ion source to the radio-frequency quadrupole. In order to achieve this goal, we have optimized a magnetostatic low energy beam transport (LEBT) consisting of two solenoids to reduce the transmission of high-charge ions generated by the source and minimize the growth of proton emittance, while taking into account various space-charge compensation scenarios. In this report, we present the optical design and discuss the multiparticle tracking results of the JAEA-ADS LEBT.

Journal Articles

Design and optimization of a proton source extraction system for the JAEA-ADS linac

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 14th International Particle Accelerator Conference (IPAC 23) (Internet), p.1591 - 1593, 2023/05

The Japan Atomic Energy Agency (JAEA) is designing a 30 MW continuous wave (cw) superconducting proton linear accelerator (linac) for the Accelerator Driven System (ADS) proposal. The JAEA-ADS linacs ion source must provide a proton beam over 20 mA with an energy of 35 keV and a normalized rms emittance of less than 0.1 $$pi$$ mm mrad. As the extraction system determines the beam properties and quality, systematic optimizations on the geometry and input values of the extraction system design were conducted using the AXCEL-INP 2-D simulation program to satisfy the goal requirements. This work describes the extraction system design and reports the beam dynamics results of the first study for the proton source of the JAEA-ADS linac.

Journal Articles

Investigation of niobium surface roughness and hydrogen content with different polishing conditions for performance recovery of superconducting QWRs in JAEA Tokai-Tandem Accelerator

Kamiya, Junichiro; Nii, Keisuke*; Kabumoto, Hiroshi; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; Matsuda, Makoto; Moriya, Katsuhiro; Ida, Yoshiaki*; et al.

e-Journal of Surface Science and Nanotechnology (Internet), 21(4), p.344 - 349, 2023/05

no abstracts in English

Journal Articles

Measurement of H$$^{0}$$ particles generated by residual gas stripping in the Japan Proton Accelerator Research Complex linac

Tamura, Jun; Futatsukawa, Kenta*; Kondo, Yasuhiro; Liu, Y.*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Okabe, Kota; Yoshimoto, Masahiro

Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04

 Times Cited Count:1 Percentile:63.33(Instruments & Instrumentation)

The Japan Proton Accelerator Research Complex (J-PARC) linac is a high-intensity accelerator in which beam loss is a critical issue. In the J-PARC linac, H$$^{-}$$ beams are accelerated to 191~MeV by a separated drift tube linac (SDTL) and subsequently to 400~MeV by an annular-ring coupled structure (ACS). Because there are more beam loss mechanisms in H$$^{-}$$ linacs than in proton linacs, it is imperative to investigate the beam loss circumstances for beam loss mitigation. Electron-stripping phenomena, which generate uncontrollable H$$^{0}$$ particles, are characteristic beam loss factors of H$$^{-}$$ linacs. To clarify the beam loss causes in the J-PARC linac, a new diagnostic line was installed in the beam transport between the SDTL and ACS. In this diagnostic line, H$$^{0}$$ particles were separated from the H$$^{-}$$ beam, and the intensity profiles of the H$$^{0}$$ particles were successfully measured by horizontally scanning a graphite plate in the range where H$$^{0}$$ particles were distributed. By examining the intensity variation of the H$$^{0}$$ particles with different residual pressure levels, we proved that half of the H$$^{0}$$ particles in the SDTL section are generated by the residual gas stripping in the nominal beam operation of the J-PARC linac.

Journal Articles

Reports of electro-polishing implementation for quarter-wave resonators, 2

Nii, Keisuke*; Ida, Yoshiaki*; Ueda, Hideki*; Yamaguchi, Takanori*; Kabumoto, Hiroshi; Kamiya, Junichiro; Kondo, Yasuhiro; Tamura, Jun; Harada, Hiroyuki; Matsui, Yutaka; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.601 - 604, 2023/01

no abstracts in English

Journal Articles

Design and beam dynamics studies of an ADS RFQ based on an equipartitioned beam scheme

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro; Jameson, R. A.*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.499 - 502, 2023/01

The Japan Atomic Energy Agency (JAEA) is designing a 30-MW proton linear accelerator (linac) for the accelerator-driven subcritical system (ADS). The Radio Frequency Quadrupole (RFQ) is an essential component for the performance of high-intensity linac, especially in ADS, where stringent reliability is demanded. The present RFQ will capture a 20 mA proton beam and accelerate from the energy of 35 keV to 2.5 MeV, where the space-charge effects are severe. The present RFQ's design employs the equipartitioning (EP) beam scheme to control the emittance growth and compactness. As a result, the beam halo formation was minimized and allowed to optimize the superconducting linac downstream part. A remarkable feature of this RFQ is the low Kilpatrick factor of 1.2 adopted to achieve high stability by reducing the probability of surface sparking on the vane. This work presents and discusses the results of this RFQ design.

Journal Articles

Availability analysis for the 30-MW proton linac of the JAEA-ADS project

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.286 - 290, 2023/01

Japan Atomic Energy Agency (JAEA) is designing a 30-MW proton linear accelerator (linac) as one of the fundamental components for its accelerator-driven subcritical system (ADS) project. ADS accelerators demand extremely high reliability and availability to avoid thermal stress in the subcritical reactor structures. Thus, reliability and availability assessments of the accelerator are mandatory to detect weakness in the lattice designed and evaluate redundancy configurations to fulfill the demanded operation. This study applied the Reliability Block Diagrams (RBD) method to calculate the Medium Time Between Failures (MTBF) for different linac configurations: all the linac's elements in a series configuration and a combination of hot-standby for the low-energy section of the linac and k-out-n redundancy for the high-energy part. The estimation considered the detailed arrangement of the cavities and magnets that compose the linac lattice. In this report, we describe the reliability model of the JAEA-ADS linac, report the MTBF results, and point out the potential route toward operating with the required availability.

Journal Articles

Robust and compact design of a 30-MW beam transport line for an accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.179 - 183, 2023/01

The Japan Atomic Energy Agency accelerator-driven subcritical system (JAEA-ADS) pursues the reduction of nuclear waste by transmuting minor actinides. JAEA-ADS project drives a 30-MW proton beam to a lead-bismuth eutectic (LBE) spallation target to produce neutrons for a subcritical core reactor. To this end, the JAEA-ADS beam transport (BT) must provide a suitable beam profile and stable beam power to the beam window of the spallation target to avoid high-thermal stress in the components, such as the beam window. The beam transport was optimized by tracking a large number of macroparticles to mitigate the beam loss, performance with high stability in the presence of errors, and fulfill the length requirement on the transport. This work presents beam transport design and beam dynamics research for the JAEA-ADS project.

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron, 2

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.

Journal Articles

Beam physics design of a 30-MW beam transport to the target for an accelerator-driven subcritical system

Yee-Rendon, B.; Meigo, Shinichiro; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Iwamoto, Hiroki; Sugawara, Takanori; Nishihara, Kenji

Journal of Instrumentation (Internet), 17(10), p.P10005_1 - P10005_21, 2022/10

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

To reduce the hazard of minor actinides in nuclear waste, JAEA proposed an accelerator-driven subcritical system (JAEA-ADS). The JAEA-ADS drives a subcritical reactor 800-MWth by 30-MW proton linac delivering the beam to the spallation neutron target inside the reactor. The beam transport to the target (BTT) is required for high-beam power stability and low peak density to ensure the integrity of the beam window. Additionally, the design should have compatible with the reactor design for the maintenance and replacement of the fuel and the beam window. A robust-compact BTT design was developed through massive multiparticle simulations. The beam optics was optimized to guarantee beam window feasibility requirements by providing a low peak density of less than 0.3 $$mu$$A/mm$$^2$$. Beam stability was evaluated and improved by simultaneously applying the linac's input beam and element errors. The input beam errors to the reactor were based on the beam degradation obtained by implementing fast fault compensation in the linac. Those results show that the BTT fulfills the requirements for JAEA-ADS.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:5 Percentile:81.82(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Current status of the spoke cavity prototyping for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Domae, Takeshi*

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.180 - 183, 2022/09

The Japan Atomic Energy Agency (JAEA) has proposed an accelerator-driven subcritical system (ADS) to efficiently reduce high-level radioactive waste generated at nuclear power plants. One of the challenging R&D aspects of ADS is the reliability of the accelerator. In preparation for the full-scale design of the CW proton linac for the JAEA-ADS, we are now prototyping a low-beta (around 0.2) single spoke cavity. Since there is no experience in Japan in manufacturing a superconducting spoke cavity, prototyping and performance testing of the cavity is essential to ensure the feasibility of the JAEA-ADS linac. In the Japanese fiscal year 2021, we have started welding cavity parts together. By preliminarily examining the electron beam welding conditions, each press-formed niobium part was joined with a smooth welding bead. At present, we have fabricated the cavity's body part.

Journal Articles

Acceleration efficiency of TE-mode structures for proton linacs

Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Naito, Fujio*; Otani, Masashi*

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.177 - 179, 2022/09

Various types of cavity structures are typically used in hadron linacs, depending on the energy range of the beam particle. This is especially the case in a normal-conducting linac, because the cavity's acceleration efficiency varies with the velocity of the synchronous particle. For low-energy proton acceleration, while Alvarez drift-tube linacs (DTLs) are the most prevalent, TE-mode accelerating structures, which could also be called H-mode structures, are also widely used immediately after an initial radiofrequency quadrupole linac (RFQ). At present, the representative structures of TE modes are interdigital H-mode (IH) DTL and crossbar H-mode (CH) DTL, which are based on the TE11-mode pillbox cavity and TE21-mode pillbox cavity, respectively. In this presentation, acceleration efficiency of TE-mode structures including higher-order TE-modes such as TE31 and TE41 was comparatively reviewed with Alvarez DTL. This study shows that IH-DTL and CH-DTL have a larger shunt impedance than Alvarez DTL for proton acceleration below 10 MeV, and furthermore for the TEm1-mode structures, the rotational symmetry of the electric field improves with increasing angular index m.

Journal Articles

Beam dynamics studies for fast beam trip recovery of the Japan Atomic Energy Agency accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Physical Review Accelerators and Beams (Internet), 25(8), p.080101_1 - 080101_17, 2022/08

 Times Cited Count:2 Percentile:47.44(Physics, Nuclear)

High reliability and availability are primary goals for the operation of particle accelerators, especially for accelerator-driven subcritical systems (ADS). ADSs employ high-power beams for the transmutation of minor actinide; as a result, the amount and the radiotoxicity of the nuclear waste are considerably reduced. To this end, the Japan Atomic Energy Agency is designing a 30-MW continuous wave (cw) super-conducting proton linear accelerator (linac) that supplies neutrons to an 800-MW subcritical reactor by a spallation process. The major challenge for an ADS linac is the strict control of the beam trip duration and its frequency to avoid thermal stress in the subcritical reactor structures. The maximum allowed beam trips for failures longer than a few seconds are estimated to be far below the rate achieved in current accelerators. Thus, we implemented a combination of hot standby and local compensation that enables a fast beam recovery. This work comprehensively investigated the tolerance of our linac lattice for the local compensations for failures in superconducting cavities and magnets. This scheme includes simultaneous compensation of multiple cavities in independent and same cryomodules that significantly enhance the reliability of the linac. The returned schemes present acceptable beam performance to guarantee the integrity of the linac and the beam transport to the target; moreover, they satisfy the beam stability in the beam window. In addition, the readjusted elements are subjected to moderate stress to ensure a sustainable operation. This manuscript reports the beam dynamics results toward fulfilling the high reliability demanded by an ADS linac.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 5; Research and developments of a superconducting linac for ADS

Kondo, Yasuhiro; Takei, Hayanori; Yee-Rendon, B.; Tamura, Jun

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.222 - 226, 2022/05

A superconducting accelerating cavity is indispensable to realize a driver linac that meets the requirements of ADS. The low-energy section of the accelerators, which is normal conducting one, was redesigned to reflect the recent progress in the development of superconducting accelerator cavities. In addition, we are developing a prototype cavity for the spoke-type cavity that has not been developed well. This section reports on the latest research and development of ADS linacs at the Japan Atomic Energy Agency.

Journal Articles

MYRRHA-MINERVA injector status and commissioning

Gatera, A.*; Belmans, J.*; Boussa, S.*; Davin, F.*; De Cock, W.*; De Florio, V.*; Doucet, F.*; Parez, L.*; Pompon, F.*; Ponton, A.*; et al.

Proceedings of 64th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2021), p.186 - 190, 2022/04

Journal Articles

Status of the JAEA-ADS superconducting linac design

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Meigo, Shinichiro; Maekawa, Fujio

Proceedings of 64th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (ICFA-HB2021) (Internet), p.30 - 34, 2022/04

The Japan Atomic Energy Agency (JAEA) is working in the research and development of an Accelerator Driven Subcritical System (ADS) for the transmutation of nuclear waste. To this end, JAEA is designing a 30-MW CW proton linear accelerator (linac) with a beam current of 20 mA. The JAEA-ADS linac starts with a Normal Conducting (NC) up to an energy of 2.5 MeV. Then, five Superconducting (SC) sections accelerate the beam up to 1.5 GeV. The biggest challenge for this ADS linac is the stringent reliability required to avoid thermal stress in the subcritical reactor, which is higher than the achieved in present accelerators. For this purpose, the linac pursues a strong-stable design that ensures the operation with low beam loss and fault-tolerance capabilities to continue operating in case of failure. This work presents the beam dynamics results toward achieving high reliability for the JAEA-ADS linac.

Journal Articles

Design and beam dynamic studies of a 30-MW superconducting linac for an accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Physical Review Accelerators and Beams (Internet), 24(12), p.120101_1 - 120101_17, 2021/12

 Times Cited Count:3 Percentile:44.64(Physics, Nuclear)

The Japan Atomic Energy Agency (JAEA) is working on the research and development of a 30-MW continuous wave (CW) proton linear accelerator (linac) for the JAEA accelerator-driven subcritical system (ADS) proposal. The linac will accelerate a 20 mA proton beam to 1.5 GeV, using mainly superconducting cavities. The main challenge for an ADS accelerator is the high reliability required to prevent thermal stress in the subcritical reactor; thus, we pursue a robust lattice to achieve stable operation. To this end, the beam optics design reduces the emittance growth and the beam halo through the superconducting part of the linac. First, we simulated an ideal machine without any errors to establish the operation conditions of the beam. Second, we applied element errors and input beam errors to estimate the tolerance of the linac design. Finally, we implemented a correction scheme to increase the lattice tolerance by reducing the beam centroid offset on the transverse plane. Massive multiparticle simulations and a cumulative statistic of 1$$times$$10$$^{8}$$ macroparticles have shown that the JAEA-ADS linac can operate with less than 1 W/m beam losses in error scenarios.

155 (Records 1-20 displayed on this page)