Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsuzaki, Akira*; Hirayama, Masaaki*; Oguchi, Shoya*; Komo, Mamoru*; Ikezawa, Atsunori*; Suzuki, Kota*; Tamura, Kazuhisa; Arai, Hajime*; Kanno, Ryoji*
Electrochemistry, 90(10), p.107001_1 - 107001_8, 2022/10
Times Cited Count:0 Percentile:0.01(Electrochemistry)Oxygen reduction and evolution reactions (ORR and OER) of perovskite-type LaSr
CoO
were characterized using two-dimensional model electrodes with different reaction planes. Synthesized by pulsed laser deposition, these thin and flat electrodes can reveal the reaction plane dependence of the ORR activity. From steady-state polarization measurements in KOH (aq.), the ORR activity was the highest on the (001) film during the first ORR/OER cycle, and it decreased significantly during the second cycle. In-situ synchrotron X-ray diffraction clarified crystal structure changes in the bulk and surface regions of La
Sr
CoO
, and these changes are associated with forming oxygen defects during the initial electrochemical process. Furthermore, the La
Sr
CoO
surface partially decomposed upon reacting. Therefore, the interfacial structures formed in the electrochemical reaction field is important for enhancing ORR and OER activities.
Tamura, Kazuhisa; Akutsu-Suyama, Kazuhiro*; Cagnes, M.*; Darwish, T. A.*
ECS Advances (Internet), 1(2), p.020503_1 - 020503_5, 2022/06
The ionic liquid/Si electrode interface was investigated using neutron reflectivity. We precisely elucidated the structure of the electrical double layer formed at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([BMIM]TFSA)/Si(100) electrode interface with the orientation of the [BMIM]TFSA molecule using a partially deuterated [BMIM]TFSA. The results revealed that [BMIM]TFSA molecules form a layered structure. Cation and anion molecules are alternatingly stacked and molecules in the first three layers are horizontally oriented to the electrode surface at E = -1.2 V, i.e., on the negatively charged electrode surface. It was also revealed that the imidazole ring in [BMIM] cation is parallel to the electrode surface.
Yasuda, Satoshi; Tamura, Kazuhisa; Kato, Masaru*; Asaoka, Hidehito; Yagi, Ichizo*
Journal of Physical Chemistry C, 125(40), p.22154 - 22162, 2021/10
Times Cited Count:4 Percentile:51.92(Chemistry, Physical)Understanding electrochemical behavior of the alkaline metal cation-graphene interface in electrolyte is essential for understanding the fundamental electrochemical interface and development of graphene-based technologies. We report comprehensive analysis of the electrochemical behavior of both alkaline metal cations and graphene using electrochemical surface X-ray diffraction (EC-SXRD) and Raman (EC-Raman) spectroscopic techniques in which the interfacial structure of cations and the charging state and mechanical strain of the graphene can be elucidated. EC-SXRD and cyclic voltammetry demonstrated electrochemically driven specific adsorption and desorption of cations on the graphene surface involved in the dehydration and hydration process. This study provides new insight for understanding fundamental electrochemical behavior of the alkaline metal cation-graphene interface and contributes to the development of carbon-based novel applications.
Hikima, Kazuhiro*; Hinuma, Yoyo*; Shimizu, Keisuke*; Suzuki, Kota*; Taminato, So*; Hirayama, Masaaki*; Masuda, Takuya*; Tamura, Kazuhisa; Kanno, Ryoji*
ACS Applied Materials & Interfaces, 13(6), p.7650 - 7663, 2021/02
Times Cited Count:4 Percentile:51.92(Nanoscience & Nanotechnology)We evaluated the structural change of the cathode material LiMnO
that was deposited as an epitaxial film with an (001) orientation in an all-solid-state battery. In case of the electrode with LiPO
coating. Experiments revealed a structural change to a high-capacity (activated) phase that proceeded gradually and continuously with cycling. The activated phase barely showed any capacity fading. We propose a mechanism of structural change with cycling: charging to a high voltage at a sufficiently low Li concentration typically induces irreversible transition to a phase detrimental to cycling that could, but not necessarily, be accompanied by the dissolution of Mn and/or the release of O into the electrolyte, while a gradual irreversible transition to an activated phase happens at a similar Li concentration under a lower voltage.
Yasuda, Satoshi; Tamura, Kazuhisa; Terasawa, Tomoo; Yano, Masahiro; Nakajima, Hideaki*; Morimoto, Takahiro*; Okazaki, Toshiya*; Agari, Ryushi*; Takahashi, Yasufumi*; Kato, Masaru*; et al.
Journal of Physical Chemistry C, 124(9), p.5300 - 5307, 2020/03
Times Cited Count:10 Percentile:57.69(Chemistry, Physical)Confinement of hydrogen molecules at graphene-substrate interface has presented significant importance from the viewpoints of development of fundamental understanding of two-dimensional material interface and energy storage system. In this study, we investigate H confinement at a graphene-Au interface by combining selective proton permeability of graphene and the electrochemical hydrogen evolution reaction (electrochemical HER) method. After HER on a graphene/Au electrode in protonic acidic solution, scanning tunneling microscopy finds that H
nanobubble structures can be produced between graphene and the Au surface. Strain analysis by Raman spectroscopy also shows that atomic size roughness on the graphene/Au surface originating from the HER-induced strain relaxation of graphene plays significant role in formation of the nucleation site and H
storage capacity.
Yoneda, Yasuhiro; Yoshigoe, Akitaka; Takeda, Yukiharu; Shiwaku, Hideaki; Matsumura, Daiju; Shobu, Takahisa; Tamura, Kazuhisa
Materia, 58(12), p.763 - 769, 2019/12
This is an introduction to the equipment provided for each implementation period belonging to the structure analysis platform in the nanotechnology platform.
Akutsu, Kazuhiro*; Cagnes, M.*; Tamura, Kazuhisa; Kanaya, Toshiji*; Darwish, T. A.*
Physical Chemistry Chemical Physics, 21(32), p.17512 - 17516, 2019/08
Times Cited Count:10 Percentile:58.11(Chemistry, Physical)We combined the deuterium labeling and neutron reflectivity techniques to determine the fine structure of the electric double layer structure in an imidazolium ionic liquid (IL). For this, a simple and large scale deuteration method for imidazolium ILs was developed, where the deuteration level can be systematically controlled.
Kishi, Hirofumi*; Sakamoto, Tomokazu*; Asazawa, Koichiro*; Yamaguchi, Susumu*; Kato, Takeshi*; Zulevi, B.*; Serov, A.*; Artyushkova, K.*; Atanassov, P.*; Matsumura, Daiju; et al.
Nanomaterials (Internet), 8(12), p.965_1 - 965_13, 2018/12
Times Cited Count:9 Percentile:48.4(Chemistry, Multidisciplinary)Taminato, So*; Hirayama, Masaaki*; Suzuki, Kota*; Kim, K.-S.*; Tamura, Kazuhisa; Kanno, Ryoji*
Journal of Physical Chemistry C, 122(29), p.16607 - 16612, 2018/07
Times Cited Count:7 Percentile:32.45(Chemistry, Physical)Lithium-rich layered rocksalt oxides are promising cathode materials for lithium-ion batteries. We investigate the effects of surface modification by amorphous LiPO
on the structures and electrochemical reactions in the surface region of an epitaxial Li
RuO
(010) film electrode. Structural characterization using SXRD, HAXPES, and NR shows that surface modification by Li
PO
resulted in the partial substitution of P for Li in the surface region of Li
RuO
. The modified (010) surface exhibits better rate capability at 20 C compared to the unmodified surface.
surface XRD confirmed that highly reversible structural changes occurred at the modified surface during lithium (de)intercalation. These results demonstrate that this surface modification stabilizes the crystal structure in the surface region, and it can improve the rate capability of lithium-rich layered rocksalt oxide cathodes.
Konishi, Hiroaki*; Hirano, Tatsumi*; Takamatsu, Daiko*; Gunji, Akira*; Feng, X.*; Furutsuki, Sho*; Okumura, Takafumi*; Terada, Shohei*; Tamura, Kazuhisa
Journal of Solid State Chemistry, 262, p.294 - 300, 2018/06
Times Cited Count:8 Percentile:50.89(Chemistry, Inorganic & Nuclear)The potential in each state of charge (SOC) during charging of LiNi
Mn
Co
O
is higher than that during discharging. To clarify the effect of chargedischarge operating conditions on the electrochemical reaction, Li
Ni
Mn
Co
O
was charged and discharged under various charge-discharge operating ranges, and OCP, crystal structure, and oxidation states of the ransition metals were evaluated by electrochemical measurement, XRD, and XAFS. These results indicate that OCP, lattice parameters, and oxidation states of the transition metals of Li
Ni
Mn
Co
O
in each SOC are not constant. The XRD results indicate that two phases, namely, LiNi
Mn
Co
O
-like and Li
MnO
-like, exist in Li
Ni
Mn
Co
O
.
Konishi, Hiroaki*; Hirano, Tatsumi*; Takamatsu, Daiko*; Gunji, Akira*; Feng, X.*; Furutsuki, Sho*; Okumura, Takafumi*; Terada, Shohei*; Tamura, Kazuhisa
Journal of Solid State Chemistry, 258, p.225 - 231, 2018/02
Times Cited Count:8 Percentile:50.89(Chemistry, Inorganic & Nuclear)LiNi
Mn
Co
O
is known as one of the cathode electrode material for Li ion batteries and its structure during charge and discharge process was investigated using electrochemical method and X-ray diffraction. It was found that in the charge process the structure changes in the order of Li
MnO
, LiNi
Mn
Co
O
, and Li
MnO
. On the other hand, in the discharge process, the structure changes in the order of Li
MnO
and LiNi
Mn
Co
O
.
Abe, Machiko*; Iba, Hideki*; Suzuki, Kota*; Minamishima, Hiroaki*; Hirayama, Masaaki*; Tamura, Kazuhisa; Mizuki, Junichiro*; Saito, Tomohiro*; Ikuhara, Yuichi*; Kanno, Ryoji*
Journal of Power Sources, 345, p.108 - 119, 2017/03
Times Cited Count:10 Percentile:40.22(Chemistry, Physical)The surface structure of the Li(Ni, Co, Mn)O electrode was studied during charge/discharge process using electrochemical methods and X-ray/Neutron scattering techniques. It was found that during charge/discharge process the coverage of spinel structure increased. The spinel structure has low electrochemical activity and is not involved in Li insertion/extraction. After the surface modification, it was found that the coverage of the spinel structure did not increase. Further, it was also found out that the Li concentration at the electrode/electrolyte interface increased.
Sakamoto, Tomokazu*; Masuda, Teruyuki*; Yoshimoto, Koji*; Kishi, Hirofumi*; Yamaguchi, Susumu*; Matsumura, Daiju; Tamura, Kazuhisa; Hori, Akihiro*; Horiuchi, Yosuke*; Serov, A.*; et al.
Journal of the Electrochemical Society, 164(4), p.F229 - F234, 2017/01
Times Cited Count:12 Percentile:46.23(Electrochemistry)Sakamoto, Tomokazu*; Kishi, Hirofumi*; Yamaguchi, Susumu*; Matsumura, Daiju; Tamura, Kazuhisa; Hori, Akihiro*; Horiuchi, Yosuke*; Serov, A.*; Artyushkova, K.*; Atanassov, P.*; et al.
Journal of the Electrochemical Society, 163(10), p.H951 - H957, 2016/08
Times Cited Count:28 Percentile:77.19(Electrochemistry)Tamura, Kazuhisa; Nishihata, Yasuo
Journal of Physical Chemistry C, 120(29), p.15691 - 15697, 2016/07
Times Cited Count:8 Percentile:31.79(Chemistry, Physical)The behavior of halide ions on the Au(111) electrode surface in two ionic liquids (ILs) was investigated by monitoring the structure of the electrode surface. The potential dependences of the X-ray diffraction intensity, which originate from the Au(111)-(11) structure and the surface normal structure, were measured simultaneously with cyclic voltammograms. The results revealed that halide ions are co-adsorbed with IL molecules on the electrode surface and increase the mobility of surface atoms. This suggests that the interaction between halide ions and surface Au atoms is weaker than that between IL molecules and surface Au atoms; that is, the surface properties are mainly governed by adsorbed IL molecules. Furthermore, a comparison of the two ILs revealed that the effect of halide ions on the structure of the Au(111) electrode surface depends on the strength of the interaction between IL molecules and surface Au atoms.
Taminato, So*; Hirayama, Masaaki*; Suzuki, Kota*; Tamura, Kazuhisa; Minato, Taketoshi*; Arai, Hajime*; Uchimoto, Yoshiharu*; Ogumi, Zempachi*; Kanno, Ryoji*
Journal of Power Sources, 307, p.599 - 603, 2016/03
Times Cited Count:30 Percentile:72.77(Chemistry, Physical)An epitaxial-film model electrode of LiCoO(104) was fabricated on SrRuO
(100)/Nb:SrTiO
(100) using pulsed laser deposition. The 50 nm thick LiCoO
(104) film exhibited lithium (de-)intercalation activity with a first discharge capacity of 119 mAh g
between 3.0 and 4.4 V, followed by a gradual capacity fading with subsequent charge-discharge cycles. In contrast, a 3.2 nm thick Li
PO
-coated film exhibited a higher intercalation capacity of 148 mAh g
with superior cycle retention than the uncoated film. In situ surface X-ray diffraction measurements revealed a small lattice change at the coated surface during the (de-)intercalation processes compared to the uncoated surface. The surface modification of LiCoO
by the Li
PO
coating could lead to improvement of the structural stability at the surface region during lithium (de-)intercalation at high voltage.
Sakamoto, Tomokazu*; Kishi, Hirofumi*; Yamaguchi, Susumu*; Tanaka, Hirohisa*; Matsumura, Daiju; Tamura, Kazuhisa; Nishihata, Yasuo
Hyomen Kagaku, 37(2), p.78 - 83, 2016/02
We have developed direct liquid fuel anion exchange membrane fuel cell vehicles to deal with the global warming. Non-platinum group metals (PGM) catalyst has been researched to apply for both anode and cathode electrodes. A test driving was carried out for the fuel cell vehicle equipped with no precious metals as catalysts at SPring-8 in 2013. Here we introduce our results of advanced analysis for reaction mechanism and active site of non-PGM catalyst using synchrotron radiation X-rays at SPring-8.
Kanno, Ryoji*; Hirayama, Masaaki*; Suzuki, Kota*; Tamura, Kazuhisa
Hyomen Kagaku, 37(2), p.52 - 59, 2016/02
Batteries are a key technology in today's society. Since the lithium-ion configuration has been widely accepted, significant efforts have been devoted to attain high energy and power densities to produce an excellent energy storage system without any safety issue. To improve the reliability and power characteristics of batteries, deep insights into the reactions at the electrode/electrolyte interface are necessary. The model systems with epitaxial thin-film electrodes might be suitable for understanding these reactions. The in situ techniques for directly observing surface structural changes of the electrodes have been developed for surface X-ray scattering and neutron reflectivity techniques. These techniques are reviewed and future studies on the interfacial reaction in batteries will be discussed.
Suzuki, Kota*; Hirayama, Masaaki*; Kim, K.-S.*; Taminato, So*; Tamura, Kazuhisa; Son, J.-Y.*; Mizuki, Junichiro; Kanno, Ryoji*
Journal of the Electrochemical Society, 162(13), p.A7083 - A7090, 2015/08
Times Cited Count:8 Percentile:29.2(Electrochemistry)The effects of surface coatings on LiMnO
were investigated using LiMn
O
epitaxial thin films with a thickness of 30 nm. Bare and surface-coated LiMn
O
epitaxial thin films were synthesized on SrTiO
(111) substrates using a pulsed laser deposition method. The surface coating, which was formed using the solid electrolyte Li
PO
and had a thickness of 3 nm, improved the reversibility of the electrochemical reactions undergone by the LiMn
O
epitaxial thin films. The changes induced in the surface structure were maintained during battery operation; in contrast, the bare LiMn
O
thin film exhibited structural degradation and Mn dissolution. The structural changes induced in the coated electrode and the increase in its surface stability were intrinsic effects of the Li
PO
coating and improved the electrochemical performance of the LiMn
O
thin-film electrode.
Sakamoto, Tomokazu*; Matsumura, Daiju; Asazawa, Koichiro*; Martinez, U.*; Serov, A.*; Artyushkova, K.*; Atanassov, P.*; Tamura, Kazuhisa; Nishihata, Yasuo; Tanaka, Hirohisa*
Electrochimica Acta, 163, p.116 - 122, 2015/05
Times Cited Count:49 Percentile:82.08(Electrochemistry)