Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kosugi, Yoshihisa*; Goto, Matato*; Tan, Z.*; Kan, Daisuke*; Isobe, Masahiko*; Yoshii, Kenji; Mizumaki, Masaichiro*; Fujita, Asaya*; Takagi, Hidenori*; Shimakawa, Yuichi*
Scientific Reports (Internet), 11(1), p.12682_1 - 12682_8, 2021/06
Times Cited Count:6 Percentile:42.88(Multidisciplinary Sciences)Caloric effects of solids provide more efficient and environment-friendly innovative refrigeration systems compared to the widely-used conventional vapor compressive cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technologies. Here we discovered that the quadruple perovskite structure ferrimagnet BiCuCrO shows a large multicaloric effect at the first-order charge transition occurred around 190 K. Large latent heat and the corresponding isothermal entropy changes 28.2 J K kg can be fully utilized by applying both magnetic fields (magnetocaloric effect) and pressure (barocaloric effect). Adiabatic temperature changes reach 3.9 K for the 50 kOe magnetic field and 4.8 K for the 4.9 kbar pressure, and thus highly efficient thermal controls are achieved by multiple ways.
Miao, P.*; Tan, Z.*; Lee, S. H.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Yonemura, Masao*; Koda, Akihiro*; Komatsu, Kazuki*; Machida, Shinichi*; Sano, Asami; et al.
Physical Review B, 103(9), p.094302_1 - 094302_18, 2021/03
Times Cited Count:3 Percentile:21.40(Materials Science, Multidisciplinary)The layered perovskite PrBaCoO demonstrates a strong negative thermal expansion (NTE) which holds potential for being fabricated into composites with zero thermal expansion. The NTE was found to be intimately associated with the spontaneous magnetic ordering, known as magneto-volume effect (MVE). Here we report with compelling evidences that the continuous-like MVE in PrBaCoO is intrinsically of discontinuous character, originating from an magnetoelectric transition from an antiferromagnetic insulating large-volume (AFILV) phase to a ferromagnetic less-insulating small-volume (FLISV) phase. Furthermore, the magnetoelectric effect (ME) shows high sensitivity to multiple external stimuli such as temperature, carrier doping, hydrostatic pressure, magnetic field etc. In contrast to the well-known ME such as colossal magnetoresistance and multi-ferroic effect which involve symmetry breaking of crystal structure, the ME in the cobaltite is purely isostructural. Our discovery provides a new path way to realizing the ME as well as the NTE, which may find applications in new techniques.
Xu, Z.*; Dai, G.*; Li, Y.*; Yin, Z.*; Rong, Y.*; Tian, L.*; Liu, P.*; Wang, H.*; Xing, L.*; Wei, Y.*; et al.
npj Quantum Materials (Internet), 5(1), p.11_1 - 11_7, 2020/02
Times Cited Count:4 Percentile:36.24(Materials Science, Multidisciplinary)Qiu, Z.*; Li, J.*; Hou, D.*; Arenholz, E.*; N'Diaye, A. T.*; Tan, A.*; Uchida, Kenichi*; Sato, Koji*; Okamoto, Satoshi*; Tserkovnyak, Y.*; et al.
Nature Communications (Internet), 7, p.12670_1 - 12670_6, 2016/08
Times Cited Count:151 Percentile:97.04(Multidisciplinary Sciences)