Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:1 Percentile:71.47(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Watanabe, Yuki; Tsuji, Tomoya; Hirota, Seiko*; Hokama, Tomonori; Nakajima, Junya; Tsujiguchi, Takakiyo*; Kimura, Tatsuki*; Koike, Hiromi*; Nakamura, Kaori*; Kuwata, Haruka*; et al.
Hoken Butsuri (Internet), 57(1), p.54 - 64, 2022/03
no abstracts in English
Tsuru, Tomohito; Itakura, Mitsuhiro; Yamaguchi, Masatake; Watanabe, Chihiro*; Miura, Hiromi*
Computational Materials Science, 203, p.111081_1 - 111081_9, 2022/02
Times Cited Count:5 Percentile:60.08(Materials Science, Multidisciplinary)The deformation mode of some titanium (Ti) alloys differs from that of pure Ti due to the presence of alloying elements in -phase. Herein, we investigated all possible slip modes in pure Ti and the effects of Al and V solutes as typical additive elements on the dislocation motion in
-Ti alloys using density functional theory (DFT) calculations. The stacking fault (SF) energies in possible slip planes indicated that both Al and V solutes reduce the SF energy in the basal plane and, in contrast, the Al solute increases the SF energy particularly in the prismatic plane. DFT calculations were subsequently performed to simulate dislocation core structures. The energy landscape of the transition between all possible dislocation core structures and the barriers for dislocation glide in various slip planes clarified the nature of dislocation motion in pure Ti. (i) the energy of prismatic core is higher than most stable pyramidal core, and thereby dislocations need to overcome the energy barrier of the cross-slip (22.8 meV/b) when they move in the prismatic plane, (ii) the energy difference between the prismatic and basal cores is larger (127 meV/b), that indicates the basal slip does not activate, (iii) however, the Peierls barrier for motion in the basal plane is not as high (16 meV/b). Direct calculations for the dislocation core around solutes revealed that both Al and V solutes facilitate dislocation motion in the basal plane by reducing the energy difference between the prismatic and basal cores. The effect of solutes characterizes the difference in the deformation mode of pure Ti and
-Ti alloys.
Miura, Hiromi*; Watanabe, Chihiro*; Aoyagi, Yoshiteru*; Oba, Yojiro; Kobayashi, Masakazu*; Yoshinaga, Naoki*
Materials Science & Engineering A, 833, p.142531_1 - 142531_12, 2022/01
Times Cited Count:2 Percentile:77.1(Nanoscience & Nanotechnology)Ogi, Hiromichi*; Arai, Yoichi; Aihara, Haruka; Watanabe, So; Shibata, Atsuhiro; Nomura, Kazunori
JAEA-Technology 2021-007, 27 Pages, 2021/06
Chemical Processing Facility (CPF) of Japan Atomic Energy Agency (JAEA) has been developing the fast reactor fuel reprocessing and vitrification technology. The various kinds of radioactive liquid wastes, which were generated by those experiments and analysis, stored in the hot cells and glove boxes of CPF. The treatment of radioactive liquid wastes were started since July 2015; however, treatment of several kinds of liquid wastes are revealed to be difficult due to contain the various hazardous chemicals. Therefore, in order to establish the new technology suitable for radioactive liquid waste treatment, several collaborative research programs with several universities and national research organizations were started. The combined project lead by JAEA was named to be STRAD (Systematic Treatments of Radioactive liquid wastes for Decommissioning) project. In this project, the process flow for treatment of several actual liquid wastes were established. In this report, treated method and progress of actual liquid wastes of CPF are summarized.
Yamaguchi, Atsushi*; Muramatsu, Haruka*; Hayashi, Tasuku*; Yuasa, Naoki*; Nakamura, Keisuke; Takimoto, Misaki; Haba, Hiromitsu*; Konashi, Kenji*; Watanabe, Makoto*; Kikunaga, Hidetoshi*; et al.
Physical Review Letters, 123(22), p.222501_1 - 222501_6, 2019/11
Times Cited Count:24 Percentile:87.36(Physics, Multidisciplinary)Watanabe, So; Ogi, Hiromichi*; Arai, Yoichi; Aihara, Haruka; Takahatake, Yoko; Shibata, Atsuhiro; Nomura, Kazunori; Kamiya, Yuichi*; Asanuma, Noriko*; Matsuura, Haruaki*; et al.
Progress in Nuclear Energy, 117, p.103090_1 - 103090_8, 2019/11
Times Cited Count:7 Percentile:70.89(Nuclear Science & Technology)Iwasaki, Toshiki*; Sekiyama, Tsuyoshi*; Nakajima, Teruyuki*; Watanabe, Akira*; Suzuki, Yasushi*; Kondo, Hiroaki*; Morino, Yu*; Terada, Hiroaki; Nagai, Haruyasu; Takigawa, Masayuki*; et al.
Atmospheric Environment, 214, p.116830_1 - 116830_11, 2019/10
Times Cited Count:5 Percentile:29.03(Environmental Sciences)The utilization of numerical atmospheric dispersion prediction (NDP) models for accidental discharge of radioactive substances was recommended by a working group of the Meteorological Society of Japan. This paper is to validate the recommendation through NDP model intercomparison in the accidental release from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Emission intensity is assumed to be constant during the whole forecast period for the worst-case scenario unless time sequence of emission is available. We expect to utilize forecasts of surface air contaminations for preventions of inhalations of radioactive substances, and column-integrated amounts for mitigation of radiation exposure associated with wet deposition. Although NDP forecasts have ensemble spread, they commonly figure out relative risk in space and time. They are of great benefit to disseminating effective warnings to public without failure. The multi-model ensemble technique may be effective to improve the reliability.
Nakahara, Masaumi; Watanabe, So; Ogi, Hiromichi*; Arai, Yoichi; Aihara, Haruka; Motoyama, Risa; Shibata, Atsuhiro; Nomura, Kazunori; Kajinami, Akihiko*
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.66 - 70, 2019/09
A wide variety of hazardous and radioactive liquid waste has generated derived from an advanced aqueous separation experiments in the Chemical Processing Facility. Therefore, they should be stabilized for the safety handling and management. In this study, we report a precipitation or an oxidation for hazardous materials, a solvent extraction for recovery of nuclear materials, and a concentration of solution by a freeze-drying method.
Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:7 Percentile:59.11(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.
Nakahara, Masaumi; Watanabe, So; Ogi, Hiromichi*; Shibata, Atsuhiro; Nomura, Kazunori
International Journal of Nuclear and Quantum Engineering (Internet), 13(4), p.191 - 194, 2019/04
High level radioactive solid waste is reduced the volume or stabilized in the Chemical Processing Facility in the Japan Atomic Energy Agency. A plastic product is molten with a heating mantle and reduced the volume. A non-flammable such as metal is cut with a band saw machine for reducing the volume. A used adsorbent in the extraction chromatograph process was heated with an electric furnace using non-radioactive materials, and the experimental result suggests that organic materials in the used adsorbent were decomposed stably.
Watanabe, So; Ogi, Hiromichi*; Shibata, Atsuhiro; Nomura, Kazunori
International Journal of Nuclear and Quantum Engineering (Internet), 13(4), p.169 - 174, 2019/04
As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH ion in the feed solution was successfully concentrated, and NH
ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.
Nomura, Kazunori; Ogi, Hiromichi*; Nakahara, Masaumi; Watanabe, So; Shibata, Atsuhiro
International Journal of Nuclear and Quantum Engineering (Internet), 13(5), p.209 - 212, 2019/00
Ito, Yuta*; Schury, P.*; Wada, Michiharu*; Arai, Fumiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Ishizawa, Satoshi*; Kaji, Daiya*; Kimura, Sota*; Koura, Hiroyuki; et al.
Physical Review Letters, 120(15), p.152501_1 - 152501_6, 2018/04
Times Cited Count:51 Percentile:93.97(Physics, Multidisciplinary)Masses of Es,
Fm and the transfermium nuclei
Md, and
No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed
neutron shell closure, have been directly measured using a multi-reflection time-of-flight mass spectrograph. The masses of
Es and
Md were measured for the first time. Using the masses of
Md as anchor points for
decay chains, the masses of heavier nuclei, up to
Bh and
Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter
derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed
neutron shell closure for Md and Lr.
Tanaka, Taiki*; Narikiyo, Yoshihiro*; Morita, Kosuke*; Fujita, Kunihiro*; Kaji, Daiya*; Morimoto, Koji*; Yamaki, Sayaka*; Wakabayashi, Yasuo*; Tanaka, Kengo*; Takeyama, Mirei*; et al.
Journal of the Physical Society of Japan, 87(1), p.014201_1 - 014201_9, 2018/01
Times Cited Count:14 Percentile:71.07(Physics, Multidisciplinary)Excitation functions of quasielastic scattering cross sections for the Ca +
Pb,
Ti +
Pb, and
Ca +
Cm reactions were successfully measured by using the gas-filled recoil-ion separator GARIS. Fusion barrier distributions were extracted from these data, and compared with the coupled-channels calculations. It was found that the peak energies of the barrier distributions for the
Ca +
Pb and
Ti +
Pb systems coincide with those of the 2n evaporation channel cross sections for the systems, while that of the
Ca +
Cm is located slightly below the 4n evaporation ones. This results provide us helpful information to predict the optimum beam energy to synthesize superheavy nuclei.
Minato, Kazuo; Tsujimoto, Kazufumi; Tanabe, Hiromi*; Fujimura, Koji*
Nihon Genshiryoku Gakkai-Shi ATOMO, 59(8), p.475 - 479, 2017/08
no abstracts in English
Schury, P.*; Wada, Michiharu*; Ito, Yuta*; Kaji, Daiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Kimura, Sota*; Koura, Hiroyuki; MacCormick, M.*; Miyatake, Hiroari*; et al.
Nuclear Instruments and Methods in Physics Research B, 407, p.160 - 165, 2017/06
Times Cited Count:10 Percentile:74.53(Instruments & Instrumentation)Various isotopes of Ac, Ra, Fr, and Rn were produced by fusion-evaporation reactions using a Ca beam. The energetic ions were stopped in and extracted from a helium gas cell. The extracted ions were identified using a multi-reflection time-of-fight mass spectrograph. In all cases, it was observed that the predominant charge state for the extracted ions, including the alkali Fr, was 2+.
Nishiuchi, Mamiko*; Sakaki, Hironao*; Esirkepov, T. Zh.*; Nishio, Katsuhisa; Pikuz, T. A.*; Faenov, A. Ya.*; Skobelev, I. Yu.*; Orlandi, R.; Pirozhkov, A. S.*; Sagisaka, Akito*; et al.
Plasma Physics Reports, 42(4), p.327 - 337, 2016/04
Times Cited Count:12 Percentile:60.9(Physics, Fluids & Plasmas)A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys. Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.
Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05
Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company is facing contaminated water issues. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater conditions and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean.
Tomizawa, Hiromitsu*; Sato, Takahiro*; Ogawa, Kanade*; Togawa, Kazuaki*; Tanaka, Takatsugu*; Hara, Toru*; Yabashi, Makina*; Tanaka, Hitoshi*; Ishikawa, Tetsuya*; Togashi, Tadashi*; et al.
High Power Laser Science and Engineering, 3, p.e14_1 - e14_10, 2015/04
Times Cited Count:6 Percentile:36.7(Optics)no abstracts in English