Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 3749

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Specifications for benchmark analyses of transient thermal-hydraulics in reactor vessel and primary heat transport system during decay heat removal operation

Kobayashi, Jun; Tanaka, Masaaki; Hamase, Erina; Ezure, Toshiki

JAEA-Data/Code 2025-009, 74 Pages, 2025/08

JAEA-Data-Code-2025-009.pdf:4.7MB

In a sodium-cooled fast reactor, a diversified auxiliary cooling system to remove decay heat from the core is required to enhance its safety. The decay heat removal systems (DHRSs) include a direct reactor auxiliary cooling system (DRACS) with a heat exchanger in the upper plenum (UP) of the reactor vessel (RV), a primary reactor auxiliary cooling system (PRACS) with a heat exchanger in the primary heat transport system (PHTS), an intermediate reactor auxiliary cooling system (IRACS) with a heat exchanger in the secondary heat transport system (SHTS), a heat removal system which employs a steam generator, and a reactor vessel auxiliary cooling system (RVACS) that effects cooling from outside the RV. In the operation of the DRACS with a dipped-type direct heat exchanger (D-DHX) installed in the UP of the RV (UP-RV), the thermal interaction, called core-plenum interaction (CPI), regarding the thermal-hydraulic phenomena in the UP-RV and the core is observed. The CPI includes the penetration flow of the sodium at a low temperature from the D-DHX into the core assemblies, the flow in the gap between assemblies, and the radial heat transfer through sodium in the gap. On the other hand, in the operation of the PRACS or IRACS, where the flowrate in the PHTS is maintained, the core coolability is affected by plant operating conditions. Two transient tests conducted at the PLANDTL-DHX sodium test facility in Japan Atomic Energy Agency were provided to develop an appropriate numerical analysis model for prediction of transient thermal-hydraulics in the DHRSs, the core, and the PHTS. In this document, the geometry information of the RV and the PHTS, including the heat exchangers for the DHRS, and the measured flowrate and temperature transients at each inlet of the intermediate heat exchanger (IHX) on the SHTS side and DHRS were specified as the boundary conditions for the benchmark analyses.

Journal Articles

Utilizing surface water adsorption on layered MnO$$_{2}$$ nanosheets for enhancing heat storage performance

Yoshisako, Hiroki*; Okamoto, Norihiko*; Tanaka, Kazuya; Ichitsubo, Tetsu

Communications Chemistry (Internet), 8, p.169_1 - 169_9, 2025/06

 Times Cited Count:0 Percentile:0.00

no abstracts in English

Journal Articles

Development of gas entrainment evaluation method in the hot plenum of sodium-cooled fast reactor

Ezure, Toshiki; Matsushita, Kentaro; Sasaki, Keisuke; Tanaka, Masaaki

Dai-29-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Yokoshu (Internet), 5 Pages, 2025/06

In the design of the pool-type demonstration sodium-cooled fast reactor (demonstration reactor), the prevention of gas entrainment in the hot plenum of the reactor vessel is one of important issues to be addressed in the conceptual design of demonstration reactor. Related to this problem, the authors have been developing an evaluation approach combining the analysis method of entrained gas-transport in the primary circuit, SYRENA, and the gas entrainment evaluation method, StreamViewer, at the free surface in the hot plenum of the demonstration reactor. In this study, a development plan of StreamViewer is presented toward application to the evaluation of the demonstration reactor design. Furthermore, an overview of scaled model water experiment of the pool-type demonstration reactor to obtain the validation date for StreamViewer is also presented.

Journal Articles

Experimental studies on spatial resolution of a delay-line current-biased kinetic inductance detector

Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.

Nuclear Instruments and Methods in Physics Research A, 1075, p.170425_1 - 170425_9, 2025/06

Journal Articles

Application study of adaptive mesh refinement method on unsteady wake vortex analysis

Alzahrani, H.*; Matsushita, Kentaro; Sakai, Takaaki*; Ezure, Toshiki; Tanaka, Masaaki

Nuclear Technology, 13 Pages, 2025/06

Development of evaluation method for cover gas entrainment by vortices generated at free surface in upper plenum of sodium-cooled fast reactor is required, and an evaluation method by predicting vortices from flow velocity distribution obtained by CFD analysis is developed. In this study, Adaptive Mesh Refinement (AMR) method is examined to improve efficiency of CFD analysis. Initial mesh was refined with two indexes: the first index (Index-1) is when the second invariant of velocity gradient tensor, Q, is negative and the second one (Index-2) is pressure gradient index added to Index-1. As a result of applying AMR method to unsteady vortices system with a flat plate and performing transient analyses with refined meshes, the result of pressure distribution and velocity around the flat plate in mesh using Index-2 was similar to the result of all refined mesh. It was also confirmed that vortices generation and growth was better simulated by refining meshes around separation area.

Journal Articles

Development of corrosion-stable dual-Si-layered membranes for hydrogen production via thermochemical iodine-sulfur process

Myagmarjav, O.; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ono, Masato; Nomura, Mikihiro*; Takegami, Hiroaki

Progress in Nuclear Science and Technology (Internet), 7, p.235 - 242, 2025/05

Journal Articles

Nuclear power propulsion system for nuclear ship "Mutsu" and technical reference

Tanaka, Kei*; Kudo, Toshihiro

Marine Engineering, 60(2), p.21 - 26, 2025/04

no abstracts in English

Journal Articles

Competition between mass-symmetric and asymmetric fission modes in $$^{258}$$Md produced in the $$^{4}$$He + $$^{254}$$Es reaction

Nishio, Katsuhisa; Hirose, Kentaro; Makii, Hiroyuki; Orlandi, R.; Kean, K. R.*; Tsukada, Kazuaki; Toyoshima, Atsushi*; Asai, Masato; Sato, Tetsuya; Chiera, N. M.*; et al.

Physical Review C, 111(4), p.044609_1 - 044609_12, 2025/04

 Times Cited Count:0 Percentile:0.00(Physics, Nuclear)

Journal Articles

Structural behaviors of lead zirconate titanate-based ferroelectric ceramics during pyroelectric-power generation cycles

Kawasaki, Takuro; Fukuda, Tatsuo; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Baba, Masaaki*; Hashimoto, Hideki*; Harjo, S.; Aizawa, Kazuya; Tanaka, Hirohisa*; et al.

Journal of Applied Physics, 137(9), p.094101_1 - 094101_7, 2025/03

 Times Cited Count:0 Percentile:0.00(Physics, Applied)

Journal Articles

Development of ARKADIA for the innovation of advanced nuclear reactor design process (Development of the design optimization support tool, ARKADIA-Design)

Tanaka, Masaaki; Doda, Norihiro; Hamase, Erina; Kuwagaki, Kazuki; Mori, Takero; Okajima, Satoshi; Kikuchi, Norihiro; Yoshimura, Kazuo; Matsushita, Kentaro; Hashidate, Ryuta; et al.

Nihon Kikai Gakkai Rombunshu (Internet), 91(943), p.24-00229_1 - 24-00229_12, 2025/03

To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) has been developed. In this paper, focusing on the ARKADIA-Design, achievements in the development of optimization processes in the fields of the core design, the plant structure design, and the maintenance schedule planning, as major function of ARKADIA-Design, and numerical analysis methods including coupled analysis to be used for the detailed analysis to confirm the plant performance after optimization are introduced at this point in time.

Journal Articles

Surface and interfacial aggregation states in thin films of a polystyrene/polyrotaxane blend

Taguchi, Miki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Ozawa, Satoru*; Hasegawa, Ryuichi*; Morimitsu, Yuma*; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*

Polymer Journal, 7 Pages, 2025/03

 Times Cited Count:0 Percentile:0.00(Polymer Science)

Journal Articles

Development of a coarse-mesh subchannel CFD model for prediction of core thermal-hydraulics in natural circulation conditions

Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki

Nuclear Engineering and Design, 432, p.113738_1 - 113738_12, 2025/02

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

To enhance the safety of sodium-cooled fast reactors, the natural circulation (NC) decay heat removal systems with a dipped-type direct heat exchanger (D-DHX) have been investigated. During the D-DHX operation, since the core-plenum interaction occurs, the reactor vessel model using a computational fluid dynamics code (RV-CFD) is required to be established. Previously, the CFD model based on the subchannel analysis was developed. In this study, to achieve lower computational cost maintaining the prediction accuracy, the coarse-mesh subchannel CFD (CMSC) model was developed, and was incorporated into the core of RV-CFD. As a result of PLANDTL-1 test analysis, the RV-CFD with the CMSC model can reproduce the core-plenum interaction under NC conditions.

Journal Articles

Development of gas entrainment evaluation model based on distribution of pressure along vortex center line; Application to a gas entrainment experiment with traveling vortices in an open water channel flow?

Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Sakai, Takaaki*

Nuclear Engineering and Design, 432, p.113785_1 - 113785_16, 2025/02

 Times Cited Count:1 Percentile:46.79(Nuclear Science & Technology)

Establishing an evaluation method for the gas entrainment (GE) of argon cover gas due to surface vortices is required in terms of safety design of sodium-cooled fast reactors. To modify the evaluation model in an in-house evaluation tool for GE, StreamViewer, a modified evaluation model on the pressure distribution along the vortex center line (PVL model) was proposed to identify the vortex center lines by connecting continuous vortex center points from the suction port to the surface and evaluate gas core length based on the balance between the hydrostatic pressure and the pressure decrease distribution along the vortex center line. PVL model was applied the three-dimensional numerical analysis results for the experiments where a plate induced unsteady traveling vortices in the open channel flow. Consequently, the GE evaluation using StreamViewer with PVL model could reproduce the relation between the inlet flow velocity and the gas core length in the unsteady vortex flow experiments.

Journal Articles

Development of a method for distinguishing alpha particles from other types of radiation using a high-resolution alpha imager

Morishita, Yuki; Sagawa, Naoki; Fujisawa, Makoto; Kurosawa, Shunsuke*; Sasano, Makoto*; Hayashi, Masateru*; Tanaka, Hiroki*

Radiation Measurements, 181, p.107371_1 - 107371_5, 2025/02

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

The effects of different types of radiation on a high-resolution alpha imager developed using an electron multiplying charge-coupled device (EMCCD) camera were investigated. This imager was originally developed to visualize alpha particles from Pu oxide particles at decommissioning sites. Other types of radiation such as beta particles, gamma rays, and neutrons are also present. The purpose of this study is to investigate the effects of these background radiations on the imager and to develop a method to discriminate between alpha particles and other types of radiation. When measuring gamma rays, and neutrons, the sensor of the EMCCD camera generated high intensity signals due to gamma rays and neutrons. These radiations were identified by image processing. The image values were binarized and the findContours function was applied to count the number of alpha particle spots. The results showed that alpha and gamma (neutron) radiation can be discriminated by using differences in intensity. This method will be useful for visualizing alpha particles at decommissioning sites.

Journal Articles

Neutron reflectometry study on the interfacial layer of epoxy resin to improve adhesion strength

Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Shundo, Atsuomi*; Kawaguchi, Daisuke*; Tanaka, Keiji*; Aoki, Hiroyuki

ACS Applied Materials & Interfaces, 8 Pages, 2025/00

Journal Articles

Construction of a Compton camera-equipped robotic system capable of moving autonomously towards the radiation source

Sato, Yuki; Kakuto, Takeshi*; Tanaka, Takayuki*; Shimano, Hiroyuki*

European Physical Journal; Special Topics, 10 Pages, 2025/00

 Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)

Journal Articles

Journal Articles

Quantitative evaluation of leakage flow rate in the sealing part using graphite gland packing to mount a hydrogen separation membrane tube for HI decomposition membrane reaction

Sugimoto, Chihiro; Myagmarjav, O.; Tanaka, Nobuyuki; Noguchi, Hiroki; Takegami, Hiroaki; Kubo, Shinji

International Journal of Hydrogen Energy, 95, p.98 - 107, 2024/12

 Times Cited Count:0 Percentile:0.00(Chemistry, Physical)

Journal Articles

Developing an online composition prediction for an HI-I$$_{2}$$-H$$_{2}$$O system using deep neural network

Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Myagmarjav, O.; Ono, Masato; Sugimoto, Chihiro

Chemical Engineering Science, 299, p.120479_1 - 120479_11, 2024/11

 Times Cited Count:0 Percentile:0.00(Engineering, Chemical)

We developed a deep neural network method to predict the composition of the iodine-sulfur process of thermochemical water-splitting hydrogen production using measurable properties. Unlike conventional titration analysis, this approach allows a quick understanding of fluid composition, providing essential information for controlling operating conditions. This study focused on the HI-I$$_{2}$$-H$$_{2}$$O three-component system within the IS process. Using Gibbs phase rule, the DNN model was constructed using online measurable parameters, such as temperature, pressure, and density, as input conditions. The model was trained with experimental data, and the structural parameters were tuned. Composition prediction using actual trend data demonstrated good correlation with titration analysis measurements. Furthermore, the local interpretable model-agnostic explanations method was incorporated to gain insights into the significance of input parameters for compositions from the DNN model, providing valuable information on crucial parameters for effective composition control.

Journal Articles

Application of energy-resolving neutron imaging to major-component analyses of materials using four-channel superconducting detector

Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.

IEEJ Transactions on Electrical and Electronic Engineering, 19(11), p.1888 - 1894, 2024/11

 Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)

3749 (Records 1-20 displayed on this page)