Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawasaki, Takuro; Fukuda, Tatsuo; Yamanaka, Satoru*; Sakamoto, Tomokazu*; Murayama, Ichiro*; Kato, Takanori*; Baba, Masaaki*; Hashimoto, Hideki*; Harjo, S.; Aizawa, Kazuya; et al.
Journal of Applied Physics, 131(13), p.134103_1 - 134103_7, 2022/04
Times Cited Count:1 Percentile:32.6(Physics, Applied)Nakasone, Shunya*; Yokoyama, Sumi*; Takahashi, Tomoyuki*; Ota, Masakazu; Kakiuchi, Hideki*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; et al.
Plasma and Fusion Research (Internet), 16, p.2405035_1 - 2405035_5, 2021/02
Removal of impurities such as organic and other types of dissolved matters from environmental water samples is required for precise analysis of tritium with a liquid scintillation counting method. In general, a distillation method is a conventional one for tritium analysis in environmental water samples, but is a time-consuming process that takes 24 hours for removal of impurities. We have proposed a rapid pretreatment method for tritium analysis, that uses ion exchange resins. In this study, we performed batch experiments, to evaluate the effectiveness of the ion exchange resins on the tritium measurement. The results obtained demonstrated that removal of impurities in the sample water by ion exchange resins can be achieved during a short period of time (i.e., in 5 min).
Nakasone, Shunya*; Yokoyama, Sumi*; Takahashi, Tomoyuki*; Ota, Masakazu; Kakiuchi, Hideki*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; et al.
Plasma and Fusion Research (Internet), 15, p.2405027_1 - 2405027_3, 2020/05
A quick preprocessing system for tritium analysis of environmental samples is important to judge environmental influence of tritium releases due to accident or tritium-handling facilities. Analysis of tritium in water samples with liquid scintillation counting method requires removal of impurities such as organic matter and ion species from water samples. Generally, a distillation method is adopted as a pretreatment of analysis for tritium; however, the distillation method is a time-consuming process. The aim of this study is to evaluate a rapid pretreatment method for tritium analysis with ion exchange resin. From batch and column experiments that used inland water and ion exchange resin, we confirmed removals of impurities of the water sample and that the removal of impurities was possible for a short time (by 5 minutes).
Kim, J.*; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Sakamoto, Tomokazu*; Kawasaki, Takuro; Fukuda, Tatsuo; Sekino, Toru*; Nakayama, Tadachika*; Takeda, Masatoshi*; et al.
Sustainable Energy & Fuels (Internet), 4(3), p.1143 - 1149, 2020/03
Times Cited Count:15 Percentile:66.47(Chemistry, Physical)Yokoyama, Sumi*; Takahashi, Tomoyuki*; Ota, Masakazu; Kakiuchi, Hideki*; Sugihara, Shinji*; Hirao, Shigekazu*; Momoshima, Noriyuki*; Tamari, Toshiya*; Shima, Nagayoshi*; Atarashi-Andoh, Mariko; et al.
Plasma and Fusion Research (Internet), 14(Sp.2), p.3405099_1 - 3405099_4, 2019/06
The Large Helical Device of the National Institute for Fusion Science started D-D experiments in 2017. To ensure the safety of the facility, it is important to develop evaluation methods for environmental tritium transfer. Tritiated water (HTO) in atmosphere and soil is transferred to plants, and organically bound tritium (OBT) is formed by photosynthesis. Prediction of OBT formation is important, because OBT accumulates in plants and causes dose through ingestion. The objective of this study is to estimate environmental tritium transfer using a simple compartment model and practical parameters. We proposed a simple compartment model consisting of air-soil-plant components, and tried to validate the model by comparison with a sophisticated model, SOLVEG. In this study, we plan to add wet deposition to the model and obtain parameters from measurements of soil permeability and tritium concentrations in air, soil and plants. We also establish rapid pretreatment methods for OBT analysis.
Noguchi, Hiroki; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kubo, Shinji
Energy Procedia, 131, p.113 - 118, 2017/12
Times Cited Count:18 Percentile:99.76The IS process is the most deeply investigated thermochemical water-splitting hydrogen production cycle. It is in a process engineering stage in JAEA to use industrial materials for components. Important engineering tasks are verification of integrity of the total process and stability of hydrogen production in harsh environment. A test facility using corrosion-resistant materials was constructed. The hydrogen production ability was 100 L/h. Operation tests of each section were conducted to confirm basic functions of reactors and separators, etc. Then, a trial operation for integration of the sections was successfully conducted to produce hydrogen of about 10 L/h for 8 hours.
Theis, C.*; Carbonez, P.*; Feldbaumer, E.*; Forkel-Wirth, D.*; Jaegerhofer, L.*; Pangallo, M.*; Perrin, D.*; Urscheler, C.*; Roesler, S.*; Vincke, H.*; et al.
EPJ Web of Conferences, 153, p.08018_1 - 08018_5, 2017/09
Times Cited Count:0 Percentile:0.03At CERN, gas-filled ionization chambers PTW-34031 (PMI) are commonly used in radiation fields including neutrons, protons and -rays. A response function for each particle is calculated by the radiation transport code FLUKA. To validate a response function to high energy neutrons, benchmark experiments with quasi mono-energetic neutrons have been carried out at RCNP, Osaka University. For neutron irradiation with energies below 200 MeV, very good agreement was found comparing the FLUKA simulations and the measurements. In addition it was found that at proton energies of 250 and 392 MeV, results calculated with neutron sources underestimate the experimental data due to a non-negligible gamma component originating from the target
Li(p,n)Be reaction.
Matsumoto, Tetsuro*; Masuda, Akihiko*; Nishiyama, Jun*; Iwase, Hiroshi*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; Yashima, Hiroshi*; Shima, Tatsushi*; et al.
EPJ Web of Conferences, 153, p.08016_1 - 08016_3, 2017/09
Times Cited Count:0 Percentile:0.03Neutron energy spectra behind concrete and iron shields were measured for quasi-monoenergetic neutrons above 200 MeV using a Bonner sphere spectrometer (BSS). Quasi-monoenergetic neutrons were produced by the Li(p,xn) reaction with 246-MeV and 389-MeV protons. The response function of BSS was also measured at neutron energies from 100 MeV to 387 MeV. In data analysis, the measured response function was used and the multiple neutron scattering effect between the BSS and the shielding material was considered. The neutron energy spectra behind the concrete and iron shields were obtained by the unfolding method using the MAXED code. Ambient dose equivalents were obtained as a function of a shield thickness successfully. For the case of the 244 MeV neutron incidence, the multiple neutron scattering effect on the effective dose is large under 50 cm thickness of the concrete shield.
Mukai, Yasunobu; Nakamichi, Hideo; Kobayashi, Daisuke; Nishimura, Kazuaki; Fujisaku, Sakae; Tanaka, Hideki; Isomae, Hidemi; Nakamura, Hironobu; Kurita, Tsutomu; Iida, Masayoshi*; et al.
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04
TRP has stored the plutonium in solution state for long-term since the last PCDF operation in 2007 was finished. After the great east Japan earthquake in 2011, JAEA had investigated the risk against potential hazard of these solutions which might lead to make hydrogen explosion and/or boiling of the solution accidents with the release of radioactive materials to the public when blackout. To reduce the risk for storing Pu solution (about 640 kg Pu), JAEA planned to perform the process operation for the solidification and stabilization of the solution by converted into MOX powder at PCDF in 2013. In order to perform PCDF operation without adaption of new safety regulation, JAEA conducted several safety measures such as emergency safety countermeasures, necessary security and safeguards (3S) measures with understanding of NRA. As a result, the PCDF operation had stared on 28th April, 2014, and successfully completed to convert MOX powder on 3rd August, 2016 for about 2 years as planned.
Ono, Ayako; Kurihara, Akikazu; Tanaka, Masaaki; Ohshima, Hiroyuki; Kamide, Hideki; Miyake, Yasuhiro*; Ito, Masami*; Nakane, Shigeru*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04
The water experiment apparatus simulating the thermal hydraulics in a reactor vessel under operating the decay heat removal systems (DHRSs) was fabricated. The theoretical evaluation for similarity and results of basic experiments show applicability for a scale model experiment of a sodium-cooled fast reactor. This paper, moreover, describes the results of flow visualization experiment under operating a dipped-type passive DHX, which is planned to be installed in both a loop type reactor and pool type reactor, and the calculation results using FLUENT comparing with the result of water experiment.
Masuda, Akihiko*; Matsumoto, Tetsuro*; Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi*; Yashima, Hiroshi*; Nakane, Yoshihiro; Nishiyama, Jun*; et al.
Nuclear Instruments and Methods in Physics Research A, 849, p.94 - 101, 2017/03
Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)Quasi-monoenergetic high-energy neutron fields induced by Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Through this study, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.
Ono, Ayako; Tanaka, Masaaki; Kobayashi, Jun; Kamide, Hideki
Mechanical Engineering Journal (Internet), 4(1), p.16-00217_1 - 16-00217_15, 2017/02
In the design of the Advanced Sodium-cooled Fast Reactor in Japan, the Reynolds number in the primary hot leg (H/L) piping reaches 4.210
. Furthermore, a short elbow is used in the H/L piping to achieve a compact plant layout. In the H/L piping, flow-induced vibration is a concern due to the excitation force caused by pressure fluctuation in the short elbow. In this report, the influence of inlet velocity condition on the unsteady velocity characteristics in the short elbow was studied by controlling the flow patterns at the elbow inlet. Measured velocity distributions indicated that the inlet velocity profiles affected a circumferential secondary flow, which then affected an area of flow separation at the elbow. It was also found that the velocity fluctuation at low frequency components observed upstream of the elbow could remain in downstream of the elbow though its intensity was attenuated.
Kamide, Hideki; Ohshima, Hiroyuki; Sakai, Takaaki; Tanaka, Masaaki
Nuclear Engineering and Design, 312, p.30 - 41, 2017/02
Times Cited Count:6 Percentile:54.04(Nuclear Science & Technology)In the framework of the Generation-IV International Forum, the safety design criteria (SDC) incorporating safety-related Research and Development results on innovative technologies and lessons learned from Fukushima Dai-ichi Nuclear Power Plants accident has been established to provide the set of general criteria for the safety designs of structures, systems and components of Generation-IV Sodium-cooled Fast Reactors (Gen-IV SFRs). A number of thermal-hydraulic evaluations are necessary to meet the concept of the criteria in the design studies of Gen-IV SFRs. This paper focuses on four kinds of thermal-hydraulic issues associated with the SDC, i.e., fuel subassembly thermal-hydraulics, natural circulation decay heat removal, core disruptive accidents, and thermal striping. Progress of evaluation methods on these issues is shown with activities on verification and validation (V and V) and experimental studies towards commercialization of SFR in Japan. These evaluation methods are planned to be eventually integrated into a comprehensive numerical simulation system that can be applied to all possible phenomena in SFR systems and that can be expected to become an effective tool for the development of human resource and the handing our knowledge and technologies down.
Kobayashi, Jun; Ezure, Toshiki; Tanaka, Masaaki; Kamide, Hideki
Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 5 Pages, 2016/11
JAEA has been conducting a design study for an advanced large-scale sodium-cooled fast reactor (SFR). Hot sodium from the fuel subassembly can mix with the cold sodium from the control rod (CR) channel at the bottom of Upper Internal Structure (UIS). Temperature fluctuation due to the fluid mixing at the core outlet may cause high cycle thermal fatigue at the bottom of UIS. JAEA had performed a water experiment to examine countermeasures for the significant temperature fluctuation generated at the bottom of SFRs UIS. Meanwhile, a self-actuated shutdown system (SASS) is equipped in a backup control rod (BCR) channel to ensure reactor shutdown. The BCR guide tubes have a flow guide structure "flow-collector" to provide reliable operation of SASS. Flow-collector may affect the thermal mixing behavior at the bottom of the UIS. This study has investigated the influence of the flow- collector on characteristics of the temperature fluctuation around the BCR channels.
Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kasahara, Seiji; Kubo, Shinji
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1022 - 1028, 2016/11
Japan Atomic Energy Agency (JAEA) has manufactured 100 NL/h-H-scale hydrogen test apparatus. In advance to conduct the continuous operation, we investigated performance of the components in each section of the IS process. In this paper, the results of test of Bunsen and HI concentration sections was shown. In Bunsen reaction, section, we confirmed that outlet gas flow rate included no SO
gas, indicating that all the feed SO
gas was absorbed to the solution in the Bunsen reactor for the Bunsen reaction. On the basis of these results, we evaluated that Bunsen reactor was workable. In HI concentration section, HI concentration was conducted by EED stack. As a result, it can concentrate HI in HIx solution as theoretically predicted on the basis of the previous paper. Based on the results added to that shown in Series II, we have conducted a trial continuous operation and succeeded it for 8 hours.
Kamide, Hideki; Ohshima, Hiroyuki; Sakai, Takaaki; Tanaka, Masaaki
Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) (USB Flash Drive), p.8141 - 8155, 2015/08
In this paper, the authors focus on four kinds of thermal-hydraulic issues associated with the SDC, i.e. fuel assembly thermal-hydraulics, natural circulation decay heat removal, thermal striping phenomena, and core disruptive accidents, and provide a description of their evaluation method developments including verification and validation and necessary experimental studies for the Japan Sodium-cooled Fast Reactor (JSFR). These evaluation methods are planned to be eventually integrated into a comprehensive numerical simulation system that can be applied to all phenomena envisioned in SFR systems and that can be expected to become an effective tool for the development of human resource and the handing down of knowledge/technologies.
Kobayashi, Jun; Tanaka, Masaaki; Ohno, Shuji; Ohshima, Hiroyuki; Kamide, Hideki
Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) (USB Flash Drive), p.6664 - 6677, 2015/08
Numerical simulation is recognized an essential tool for the physical phenomena analysis and plant design study of a sodium-cooled fast reactor (SFR). In order to enhance credibility of the numerical results in the activities for plant design by using numerical simulations, it is recognized that verification and validation (V&V) process is very important. In this study, experiments for planar triple parallel jets mixing phenomena conducted in JAEA were proposed as benchmark problems for the code validation in the area of thermal striping study in the SFR development.
Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Wakasugi, Keiichiro; Mitsui, Seiichiro; Kitamura, Akira; Yoshikawa, Hideki; Oda, Chie; Ishidera, Takamitsu; et al.
JAEA-Research 2014-030, 457 Pages, 2015/03
JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and post-closure performance assessment in preliminary investigation stage. With regard to (1) study on rock suitability in terms of hydrology, based on some examples of developing method of hydro-geological structure model, acquired knowledge are arranged using the tree diagram, and model uncertainty and its influence on the evaluation items were discussed. With regard to (2) study on scenario development, the developed approach for "defining conditions" has been reevaluated and improved from practical viewpoints. In addition, the uncertainty evaluation for the effect of use of cementitious material, as well as glass dissolution model, was conducted with analytical evaluation. With regard to (3) study on setting radionuclide migration parameters, based on survey of precedent procedures, multiple-approach for distribution coefficient of rocks was established, and the adequacy of the approach was confirmed though its application to sedimentary rock and granitic rock. Besides, an approach for solubility setting was developed including the procedure of selection of solubility limiting solid phase. The adequacy of the approach was confirmed though its application to key radionuclides.
Aizawa, Kosuke; Kobayashi, Jun; Onojima, Takamitsu; Tanaka, Masaaki; Ohno, Shuji; Kamide, Hideki; Nagasawa, Kazuyoshi*
Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 13 Pages, 2014/12
Thermal striping phenomenon is one of the most important issues in an advanced loop type sodium cooled reactor JSFR. Temperature fluctuation caused by mixing of fluids at different temperature from the control rod channels and the core fuel assemblies may touch the Core Instrument Plane (CIP) at bottom of the Upper Internal Structure (UIS) and cause high cycle thermal fatigue there. In JAEA, the 1/3-scaled Five Jets Water Test (FIWAT) has been performed in order to investigate thermal striping phenomena around the CIP. In the FIWAT, the test section was simulating a control rod channel, adjacent four fuel subassemblies and a part of the CIP. The flow rate ratio and the absolute velocity of hot jets as the reference experimental condition were equal to that of the JSFR and a third of JSFR, respectively. In the experiment, it was shown that the fluid temperature fluctuation characteristics around the structure depended on the flow rate ratio. The temperature fluctuation which showed sudden decrease and recovery like a spike form was intermittently observed in the fluid near the structure. The amplitude of such spike-like temperature fluctuation in the fluid was much mitigated on the structure surface.
Ono, Ayako; Tanaka, Masaaki; Kobayashi, Jun; Kamide, Hideki
Proceedings of 9th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-9) (CD-ROM), 7 Pages, 2014/11