Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kusaka, Shotaro*; Sasaki, Taisuke*; Sumida, Kazuki; Ichinokura, Satoru*; Ideta, Shinichiro*; Tanaka, Kiyohisa*; Hono, Kazuhiro*; Hirahara, Toru*
Applied Physics Letters, 120(17), p.173102_1 - 173102_5, 2022/04
Times Cited Count:1 Percentile:48.88(Physics, Applied)Ideta, Shinichiro*; Johnston, S.*; Yoshida, Teppei*; Tanaka, Kiyohisa*; Mori, Michiyasu; Anzai, Hiroaki*; Ino, Akihiro*; Arita, Masashi*; Namatame, Hirofumi*; Taniguchi, Masaki*; et al.
Physical Review Letters, 127(21), p.217004_1 - 217004_6, 2021/11
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Fukasawa, Takuro*; Kusaka, Shotaro*; Sumida, Kazuki; Hashizume, Mizuki*; Ichinokura, Satoru*; Takeda, Yukiharu; Ideta, Shinichiro*; Tanaka, Kiyohisa*; Shimizu, Ryota*; Hitosugi, Taro*; et al.
Physical Review B, 103(20), p.205405_1 - 205405_6, 2021/05
Times Cited Count:5 Percentile:54.6(Materials Science, Multidisciplinary)Hirahara, Toru*; Otrokov, M. M.*; Sasaki, Taisuke*; Sumida, Kazuki*; Tomohiro, Yuta*; Kusaka, Shotaro*; Okuyama, Yuma*; Ichinokura, Satoru*; Kobayashi, Masaki*; Takeda, Yukiharu; et al.
Nature Communications (Internet), 11, p.4821_1 - 4821_8, 2020/09
Times Cited Count:32 Percentile:92.44(Multidisciplinary Sciences)Kuroda, Kenta*; Arai, Yosuke*; Rezaei, N.*; Kunisada, So*; Sakuragi, Shunsuke*; Alaei, M.*; Kinoshita, Yuto*; Bareille, C.*; Noguchi, Ryo*; Nakayama, Mitsuhiro*; et al.
Nature Communications (Internet), 11, p.2888_1 - 2888_9, 2020/06
Times Cited Count:13 Percentile:72.2(Multidisciplinary Sciences)Ideta, Shinichiro*; Murai, Naoki; Nakajima, Masamichi*; Kajimoto, Ryoichi; Tanaka, Kiyohisa*
Physical Review B, 100(23), p.235135_1 - 235135_7, 2019/12
Times Cited Count:1 Percentile:5.87(Materials Science, Multidisciplinary)Murai, Naoki; Suzuki, Katsuhiro*; Ideta, Shinichiro*; Nakajima, Masamichi*; Tanaka, Kiyohisa*; Ikeda, Hiroaki*; Kajimoto, Ryoichi
Physical Review B, 97(24), p.241112_1 - 241112_6, 2018/06
Times Cited Count:5 Percentile:29.23(Materials Science, Multidisciplinary)We use inelastic neutron scattering (INS) to investigate the effect of electron correlations on spin dynamics in iron-based superconductor BaK
Fe
As
. Our INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A first principles analysis of dynamical spin susceptibility, incorporating the mass renormalization factor of 3, as determined by angle-resolved photoemission spectroscopy, provides a reasonable description of the observed spin excitations. This analysis shows that electron correlations in the Fe-3d bands yield enhanced effective electron masses, and consequently, induce substantial narrowing of the spin excitation bandwidth. Our results highlight the importance of electron correlations in an itinerant description of the spin excitations in iron-based superconductors.
He, R.-H.*; Hashimoto, Makoto*; Karapetyan, H.*; Koralek, J. D.*; Hinton, J. P.*; Testaud, J. P.*; Nathan, V.*; Yoshida, Yoshiyuki*; Yao, H.*; Tanaka, Kiyohisa*; et al.
Science, 331(6024), p.1579 - 1583, 2011/03
Times Cited Count:265 Percentile:98.72(Multidisciplinary Sciences)The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at
of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (
), entangled in an energy-momentum dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.
Hashimoto, Makoto*; Yoshida, Teppei*; Tanaka, Kiyohisa*; Fujimori, Atsushi*; Okusawa, Makoto*; Wakimoto, Shuichi; Yamada, Kazuyoshi*; Kakeshita, Teruhisa*; Eisaki, Hiroshi*; Uchida, Shinichi*
Physical Review B, 79(14), p.140502_1 - 140502_4, 2009/04
Times Cited Count:14 Percentile:53.18(Materials Science, Multidisciplinary)Hashimoto, Makoto*; Tanaka, Kiyohisa*; Yoshida, Teppei*; Fujimori, Atsushi*; Okusawa, Makoto*; Wakimoto, Shuichi; Yamada, Kazuyoshi*; Kakeshita, Teruhisa*; Eisaki, Hiroshi*; Uchida, Shinichi*
Physica C, 460-462(2), p.884 - 885, 2007/09
Times Cited Count:3 Percentile:18.3(Physics, Applied)In the high- research, relationship between the pseudogap and the superconducting gap has been an important issue. We have performed a detailed temperature-dependent angle-integrated photoemission study of lightly-doped to heavily-overdoped La
Sr
CuO
and oxygen-doped La
CuO
. We found that, while the magnitude of the pseudogap increased with decreasing doping, that of the superconducting gap did not increase. This behavior can be explained if the superconducting gap opens only on the Fermi arc around the node (0,0)-(
,
) whereas the pseudogap opens primarily around (
,0).
Hashimoto, Makoto*; Yoshida, Teppei*; Tanaka, Kiyohisa*; Fujimori, Atsushi*; Okusawa, Makoto*; Wakimoto, Shuichi; Yamada, Kazuyoshi*; Kakeshita, Teruhisa*; Eisaki, Hiroshi*; Uchida, Shinichi*
Physical Review B, 75(14), p.140503_1 - 140503_4, 2007/04
Times Cited Count:65 Percentile:88.88(Materials Science, Multidisciplinary)We have performed a temperature-dependent angle-integrated photoemission study of LaSr
CuO
covering from lightly doped to heavily overdoped regions and oxygen -doped La
CuO
. The superconducting gap energy
was found to remain small for decreasing hole concentration while the pseudogap energy
and temperature
increase. The different behaviors of the superconducting gap and the pseudogap can be explained if the superconducting gap opens only on the Fermi arc around the nodal (0,0)-
direction while the pseudogap opens around
. The results suggest that the pseudogap and the superconducting gap have different microscopic origins.
Fujimori, Shinichi; Mo, S.-K.*; Tanaka, Kiyohisa*; Hussain, Z.*; Shen, Z. X.*; Fujimori, Atsushi; Yamagami, Hiroshi; Settai, Rikio*; Onuki, Yoshichika*
no journal, ,
We have performed angle resolved photoelectron spectroscopy study on CeIrSi, which does not have inversion symmetry in its crystal structure. The experiments were done in Advanced Light Source BL10.0.1. We have found that 4f derived bands mix with the ligand d bands. This result suggests that 4f electrons in this compound have some itinerant character.
Murai, Naoki; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Tanaka, Kiyohisa*; Nakajima, Masamichi*; Ideta, Shinichiro*; Suzuki, Katsuhiro*
no journal, ,
We report an inelastic neutron scattering (INS) study of underdoped Ba_K_
Fe_
As_
that shows the presence of double-resonance at the same commensurate wave vector in the superconducting (SC) state. By comparing our INS data with the SC gap structure of the same crystal, as measured by angle-resolved photoemission spectroscopy (ARPES), we show that the observed double-resonance feature originates neither from SC gap anisotropy nor from multiple SC gaps on different Fermi-surface sheets. This suggests that the double-resonance feature in iron-pnictides cannot be interpreted within a spin-exciton scenario.
Murai, Naoki; Kajimoto, Ryoichi; Suzuki, Katsuhiro*; Ideta, Shinichiro*; Nakajima, Masamichi*; Ikeda, Hiroaki*; Tanaka, Kiyohisa*
no journal, ,
Using inelastic neutron scattering (INS) and angle-resolved photoemission spectroscopy (ARPES), we investigate the spin dynamics of iron-based superconductor BaK
Fe
As
. The INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A random phase approximation (RPA) treatment of the dynamical spin susceptibility, incorporating the band renormalization factor of 3 derived from the ARPES measurements on the same crystals, provides a reasonable description of the observed spin excitations. This analysis shows that the experimental spin excitation peak lies at a much lower energy than the bare value, reflecting a strong renormalization of the quasiparticle band dispersion near the Fermi level due to electron correlation effect. The present results point to a unified framework that connects the magnetic response to the underlying electronic structure of the materials.
Murai, Naoki; Kajimoto, Ryoichi; Suzuki, Katsuhiro*; Ikeda, Hiroaki*; Nakajima, Masamichi*; Ideta, Shinichiro*; Tanaka, Kiyohisa*
no journal, ,
no abstracts in English
Murai, Naoki; Kajimoto, Ryoichi; Suzuki, Katsuhiro*; Nakajima, Masamichi*; Ikeda, Hiroaki*; Ideta, Shinichiro*; Tanaka, Kiyohisa*
no journal, ,
We report inelastic neutron scattering (INS) study of hole-doped iron-based superconductor BaK
Fe
As
(x = 0.25). The INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A random phase approximation (RPA) treatment of the dynamical spin susceptibility, incorporating the band renormalization factor of 3 derived from angle-resolved photoemission spectroscopy (ARPES) measurements on the same sample, provides a reasonable description of the observed spin excitations. This analysis shows that the Fe-3d bandwidth narrowing due to electron correlation is directly reflected in the spin excitation energy scale. We will discuss the current state of our analysis relating the magnetic response to the underlying electronic structure of the materials.
Murai, Naoki; Kajimoto, Ryoichi; Suzuki, Katsuhiro*; Ikeda, Hiroaki*; Nakajima, Masamichi*; Ideta, Shinichiro*; Tanaka, Kiyohisa*
no journal, ,
We use inelastic neutron scattering (INS) to investigate the effect of electron correlations on spin dynamics in iron-based superconductor BaK
Fe
As
. Our INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A first principles analysis of dynamical spin susceptibility, incorporating the mass renormalization factor of 3, as determined by angle-resolved photoemission spectroscopy, provides a reasonable description of the observed spin excitations. This analysis shows that electron correlations in the Fe-3d bands yield enhanced effective electron masses, and consequently, induce substantial narrowing of the spin excitation bandwidth. Our results highlight the importance of electron correlations in an itinerant description of the spin excitations in iron-based superconductors.