Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawasaki, Takuro; Fukuda, Tatsuo; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Baba, Masaaki*; Hashimoto, Hideki*; Harjo, S.; Aizawa, Kazuya; Tanaka, Hirohisa*; et al.
Journal of Applied Physics, 137(9), p.094101_1 - 094101_7, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Tanaka, Masaaki; Doda, Norihiro; Hamase, Erina; Kuwagaki, Kazuki; Mori, Takero; Okajima, Satoshi; Kikuchi, Norihiro; Yoshimura, Kazuo; Matsushita, Kentaro; Hashidate, Ryuta; et al.
Nihon Kikai Gakkai Rombunshu (Internet), 91(943), p.24-00229_1 - 24-00229_12, 2025/03
To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) has been developed. In this paper, focusing on the ARKADIA-Design, achievements in the development of optimization processes in the fields of the core design, the plant structure design, and the maintenance schedule planning, as major function of ARKADIA-Design, and numerical analysis methods including coupled analysis to be used for the detailed analysis to confirm the plant performance after optimization are introduced at this point in time.
Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Sakai, Takaaki*
Nuclear Engineering and Design, 432, p.113785_1 - 113785_16, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Establishing an evaluation method for the gas entrainment (GE) of argon cover gas due to surface vortices is required in terms of safety design of sodium-cooled fast reactors. To modify the evaluation model in an in-house evaluation tool for GE, StreamViewer, a modified evaluation model on the pressure distribution along the vortex center line (PVL model) was proposed to identify the vortex center lines by connecting continuous vortex center points from the suction port to the surface and evaluate gas core length based on the balance between the hydrostatic pressure and the pressure decrease distribution along the vortex center line. PVL model was applied the three-dimensional numerical analysis results for the experiments where a plate induced unsteady traveling vortices in the open channel flow. Consequently, the GE evaluation using StreamViewer with PVL model could reproduce the relation between the inlet flow velocity and the gas core length in the unsteady vortex flow experiments.
Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki
Nuclear Engineering and Design, 432, p.113738_1 - 113738_12, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)To enhance the safety of sodium-cooled fast reactors, the natural circulation (NC) decay heat removal systems with a dipped-type direct heat exchanger (D-DHX) have been investigated. During the D-DHX operation, since the core-plenum interaction occurs, the reactor vessel model using a computational fluid dynamics code (RV-CFD) is required to be established. Previously, the CFD model based on the subchannel analysis was developed. In this study, to achieve lower computational cost maintaining the prediction accuracy, the coarse-mesh subchannel CFD (CMSC) model was developed, and was incorporated into the core of RV-CFD. As a result of PLANDTL-1 test analysis, the RV-CFD with the CMSC model can reproduce the core-plenum interaction under NC conditions.
Hayakawa, Satoshi*; Hagiwara, Hiroyuki*; Imamura, Akira*; Onoda, Yuichi; Tanaka, Masaaki; Nakamura, Hironori*
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 8 Pages, 2024/11
In a sodium-cooled fast reactor, a cover gas region filled with argon gas is located above the sodium pool in the main vessel to prevent the hot sodium from contacting the structures. This region involves heat transportation by natural convection of the cover gas, radiation among liquid surface and structures, and sodium phase change between mist and vapor. In this study, the numerical evaluation method has been developed with a commercial CFD code, Fluent, incorporating the sodium mist transport and growth models, and the radiation scattering model. Simulations of a laboratory scale test with a cylindrical cover gas region was carried out for the validation of the method and showed that the temperature distribution and sodium mist concentration in the cover gas region are in good agreements with the test results. A simulation of a pool-type sodium cooled fast reactor has also conducted and the basic aspect of physical phenomena taking place in the cover gas region were evaluated.
Hamase, Erina; Kawamura, Takumi*; Doda, Norihiro; Tanaka, Masaaki
Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 10 Pages, 2024/11
A plant dynamics analysis code, Super-COPD, is being developed for the design and safety evaluation of sodium-cooled fast reactors. Verification, validation, and uncertainty quantification (VVUQ) are required to ensure the reliability of its analysis results. In this study, to develop the VVUQ method, the uncertainty propagation analysis of input parameters was performed for the loss of flow without scram test in the FFTF, and the process of validation was investigated. In addition, the method of sensitivity analysis was investigated. As a result, the uncertainty of the analysis results was quantified, the applicability of the statistical method was confirmed. The sensitivity analysis using the Sobol' method identified the models that needs to be prioritized for improvement.
Wozniak, N.*; Shemon, E.*; Feng, B.*; Ohgama, Kazuya; Doda, Norihiro; Uwaba, Tomoyuki; Futagami, Satoshi; Tanaka, Masaaki; Yamano, Hidemasa; Ota, Hirokazu*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
To enhance the accuracy of the safety evaluations in sodium-cooled fast reactors, it is necessary to develop a method to realistically evaluate the reactivity caused by core deformation. In this regard, Japan and the United States jointly conducted a benchmark analysis of thermal bowing experiments using multiple ducts of Joyo-type fuel assembly. The aim was to confirm the validity of the core bowing analysis codes. Comparisons of analysis and test results revealed that the core bowing analysis codes used by both countries were able to reasonably predict the thermal bowing of a row of assemblies.
Ohgama, Kazuya; Doda, Norihiro; Uwaba, Tomoyuki; Futagami, Satoshi; Tanaka, Masaaki; Yamano, Hidemasa; Ota, Hirokazu*; Ogata, Takanari*; Wozniak, N.*; Shemon, E.*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
To enhance the accuracy of the safety evaluations in sodium-cooled fast reactors, it is necessary to develop a method to realistically evaluate the reactivity caused by core deformation. In this regard, Japan and the United States jointly conducted a benchmark analysis of thermal bowing experiments of a single duct of Joyo-type fuel assembly. The aim was to confirm the validity of the core bowing analysis codes. Comparisons of analysis and test results revealed that the core bowing analysis codes used by both countries were able to reasonably predict the axial distribution of horizontal duct displacement of a single duct due to thermal bowing and the contact load on the duct pad.
Matsushita, Kentaro; Ezure, Toshiki; Fujisaki, Tatsuya*; Imai, Yasutomo*; Tanaka, Masaaki
Nihon Kikai Gakkai 2024-Nendo Nenji Taikai Koen Rombunshu (Internet), 5 Pages, 2024/09
An evaluation method of gas entrainment phenomena due to free surface vortices has been developed for the design of a reactor vessel of sodium-cooled fast reactor. The method predicts vortex dimple using the vortex model to the flow field obtained from three dimensional hydraulic analyses of an evaluation area. In this study, the application of adaptive mesh refinement (AMR) method to a water flow experiment in a rectangular channel with advection vortices was examined to create analysis meshes automatically. Transient analyses were conducted using refined meshes obtained by AMR under different initial grid size conditions. Then, the quantities related to vortex formation and the computation cost were compared with the result in a reference mesh with uniformly fine grids. As the result, it was confirmed that the variation of the grid number is possible to use as a criterion to judge the refinement termination in AMR, and the calculated cost of transient analysis can be reduced by AMR.
Yoshikawa, Ryuji; Kikuchi, Norihiro; Tanaka, Masaaki
Nihon Kikai Gakkai 2024-Nendo Nenji Taikai Koen Rombunshu (Internet), 5 Pages, 2024/09
In the study of safety enhancements on advanced sodium-cooled fast reactor, it has been essential to evaluate the influence of buoyancy on pressure drop in a fuel assembly at mixed convection condition during natural circulation under the decay heat removal operation. In this study, the numerical simulations of the 19-rod and 91-rod bundle water experiments at low flow rate conditions were performed for the validation of a thermal-hydraulic analysis code named SPIRAL with the hybrid turbulence model. The influence of buoyancy on the velocity and temperature distributions was analyzed, and the applicability of the hybrid turbulence model to the pressure drop evaluation was investigated by comparison with the experimental friction factors.
Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki
Nihon Kikai Gakkai 2024-Nendo Nenji Taikai Koen Rombunshu (Internet), 5 Pages, 2024/09
In a design study of sodium-cooled fast reactors, we have developed the practical reactor vessel thermal-hydraulic analysis method (RV-CFD) that had a low computational cost about the thermal-hydraulics in the core to evaluate the core-plenum interactions occurred in the natural circulation decay heat removal during the dipped-type direct heat exchanger operation. In this study, the non-equilibrium thermal model which considered the thermal inertia of fuel pins was developed and incorporated into the core of RV-CFD. Through the transient analysis simulating the power reduction due to reactor scram, the applicability of RV-CFD to the transient analysis was confirmed.
Hamase, Erina; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Imai, Yasutomo*
Proceedings of 14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation, and Safety (NTHOS-14) (Internet), 12 Pages, 2024/08
We have been developed a thermal-hydraulic analysis model in the reactor vessel using the computational fluid dynamics code with a low computational cost to evaluate core-plenum interactions during a natural circulation decay heat removal using a dipped-type direct heat exchanger in a design of sodium-cooled fast reactors. In this study, we investigate the coarse mesh modeling of interwrapper gap (IWG) using correlations for the purpose of the development of a practical model which can reduce the computational cost maintaining the prediction accuracy. An influence of combinations of the coarse mesh and the correlation for pressure loss in the IWG on the thermal-hydraulics and the core temperature distribution is revealed through the numerical analysis of a sodium experiment.
Tanaka, Masaaki; Doda, Norihiro; Hamase, Erina; Kuwagaki, Kazuki; Mori, Takero; Okajima, Satoshi; Kikuchi, Norihiro; Yoshimura, Kazuo; Matsushita, Kentaro; Hashidate, Ryuta; et al.
Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2024/06
To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, development of an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) is undergoing. In this paper, focusing on the ARKADIA-Design, achievements in the development of optimization processes in the fields of the core design, the plant structure design, and the maintenance schedule planning, as major function of ARKADIA-Design, and numerical analysis methods to be used for the detailed analysis to confirm the plant performance after optimization are introduced at this point in time.
Doda, Norihiro; Nakamine, Yoshiaki*; Yoshimura, Kazuo; Kuwagaki, Kazuki; Hamase, Erina; Yokoyama, Kenji; Kikuchi, Norihiro; Mori, Takero; Hashidate, Ryuta; Tanaka, Masaaki
Keisan Kogaku Koenkai Rombunshu (CD-ROM), 29, 6 Pages, 2024/06
As a part of the development of the "Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle (ARKADIA)" to utilize the knowledge obtained through the sodium-cooled fast reactors (SFRs) and combine the latest numerical simulation technologies, ARKADIA-Design is being developed to support the optimization of SFRs in the conceptual design stage. ARKADIA-Design consists of three systems of Virtual Plant Life System (VLS), Enhanced and AI-aided optimization System (EAS), and Knowledge Management System (KMS). A design optimization framework controls the linkage among the three systems through the interfaces in each system. In this study, we have developed a prototype of the framework for core design optimization using the coupled analysis functions in VLS and optimization control function in the linkage of EAS and VLS to investigate the applicability of the framework to the SFR design optimization process.
Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki
Nuclear Technology, 210(5), p.814 - 835, 2024/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In the study of safety enhancement on advanced sodium-cooled fast reactor, it is essential to clarify the thermal-hydraulics under various operation conditions in a fuel assembly (FA) with the wire-wrapped fuel pins to assess the structural integrity of the fuel pin. A finite element thermal-hydraulics analysis code named SPIRAL has been developed to analyze the detailed thermal-hydraulics phenomena in a FA. In this study, the numerical simulations of the 37-pin bundle sodium experiments at different Re number conditions, including a transitional condition between laminar and turbulent flows and turbulent flow conditions, were performed to validate the hybrid turbulence model equipped in SPIRAL. The temperature distributions predicted by SPIRAL was consistent with those measured in the experiments. Through the validation study, the applicability of the hybrid turbulence model in SPIRAL to thermal-hydraulic evaluation of sodium-cooled FA in the wide range of Re number was confirmed.
Tanaka, Masaaki; Enuma, Yasuhiro; Okano, Yasushi; Uchibori, Akihiro; Yokoyama, Kenji; Seki, Akiyuki; Wakai, Takashi; Asayama, Tai
Mechanical Engineering Journal (Internet), 11(2), p.23-00424_1 - 23-00424_13, 2024/04
The outline and development status of element functions and design optimization process in ARKADIA to transform advanced nuclear reactor design to meet expectations of a safe, economic, and sustainable carbon-free energy source are introduced. It is also briefly explained that ARKADIA will realize Artificial Intelligence (AI)-aided integrated numerical analysis to offer the best possible solutions for the design and operation of a nuclear plant including optimization of safety equipment, and merge state-of-the-art numerical simulation technologies and a knowledge base that stores data and insights from past nuclear reactor development projects and R&Ds with AI technologies.
Hamase, Erina; Kuwagaki, Kazuki; Doda, Norihiro; Yokoyama, Kenji; Tanaka, Masaaki
Mechanical Engineering Journal (Internet), 11(2), p.23-00440_1 - 23-00440_14, 2024/04
The core design optimization process is being developed as part of the design optimization support tool named ARKADIA-Design. The process performs the integrated analysis with neutronics, thermal-hydraulics, fuel integrity, and plant dynamics using the Bayesian optimization (BO) algorithm, and obtains the optimal design parameters efficiently. In this study, the representative problem was defined based on core design experiences, and the process was specified. To confirm the appropriateness of the definition of representative problem, as a minimum requirement, the single-objective optimization problem was solved by the integrated analysis with neutronics and plant dynamics using the BO. We found the existence of the optimal solution and the agreement between this solution and the reference one. There was the prospect that the process was applicable to the representative problem.
Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Uwaba, Tomoyuki; Tanaka, Masaaki; Nemoto, Toshiyuki*
Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 8 Pages, 2024/03
To investigate possibility of the insertion of the reactivity by the deflection of the upper core support plate, structural mechanics analyses of the domain consisting of the fuel assemblies and core support plates and evaluation of the reactivity due to the inclination of the fuel assemblies in EBR-II were carried out. As a result, it was indicated that the upper core support plate deflected downward larger at the low flowrate condition than that at the high flowrate condition and positive reactivity was inserted due to the inclination of the fuel assemblies at the low flowrate condition.
Hamase, Erina; Ohgama, Kazuya; Kawamura, Takumi*; Doda, Norihiro; Tanaka, Masaaki; Yamano, Hidemasa
Annals of Nuclear Energy, 195, p.110157_1 - 110157_14, 2024/01
Times Cited Count:3 Percentile:49.11(Nuclear Science & Technology)To validate the fast reactor plant dynamics analysis code Super-COPD for the loss of flow without scram (LOFWOS) event, we participated in the IAEA benchmark for the LOFWOS test No.13 performed at the FFTF as one of the passive safety demonstration test. In the blind phase, there were challenges to reproduce outlet temperatures of fuel assemblies and the total reactivity. To improve the evaluation accuracy of them, the whole core model considering the radial heat transfer and interwrapper flow and the simplified assembly bowing reactivity model were introduced. As a result of the final phase, the second peak of outlet temperatures was reproduced successfully, and the total reactivity could generally follow the measured data. Super-COPD was validated for the LOFWOS event.
Uchibori, Akihiro; Doda, Norihiro; Aoyagi, Mitsuhiro; Sonehara, Masateru; Sogabe, Joji; Okano, Yasushi; Takata, Takashi*; Tanaka, Masaaki; Enuma, Yasuhiro; Wakai, Takashi; et al.
Nuclear Engineering and Design, 413, p.112492_1 - 112492_10, 2023/11
Times Cited Count:2 Percentile:49.11(Nuclear Science & Technology)The ARKAIDA has been developed to realize automatic optimization of plant design from safety evaluation for the advanced reactors represented by a sodium-cooled fast reactor. ARKADIA-Design offers functions to support design optimization both in normal operating conditions and design basis events. The multi-level simulation approach by the coupled analysis such as neutronics, core deformation, core thermal hydraulics was developed as one of the main technologies. On the other hand, ARKAIDA-Safety aims for safety evaluation considering severe accidents. As a key technology, the numerical methods for in- and ex-vessel coupled phenomena during severe accidents in sodium-cooled fast reactors were tested through a hypothetical severe accident event. Improvement of the ex-vessel model and development of the AI technology to find best design solution have been started.