Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
IEEJ Transactions on Electrical and Electronic Engineering, 19(11), p.1888 - 1894, 2024/11
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Machida, Masahiko; Yamada, Susumu; Kim, M.; Tanaka, Satoshi*; Tobita, Yasuhiro*; Iwata, Ayako*; Aoki, Yuto; Aoki, Kazuhisa; Yanagisawa, Kenichi*; Yamaguchi, Takashi; et al.
RIST News, (70), p.3 - 22, 2024/09
Inside the Fukushima Daiichi Nuclear Power Plant (1F), there are many locations with high radiation levels due to contamination by radioactive materials that leaked from the reactor. These pose a significant obstacle to the smooth progress of decommissioning work. To help solve this issue, the Japan Atomic Energy Agency (JAEA), under a subsidy from the Ministry of Economy, Trade, and Industry's decommissioning and contaminated water management project, is conducting research and development on digital technologies to improve the radiation environment inside the decommissioning site. This project, titled "Development of Technology to Improve the Environment Inside Reactor Buildings (Enhancing Digital Technology for Environment and Source Distribution to Reduce Radiation Exposure)," began in April of FY 2023. In this project, the aim is to develop three interconnected systems: FrontEnd, Pro, and BackEnd. The FrontEnd system, based on the previously developed 3D-ADRES-Indoor (prototype) from FY 2021-2022, will be upgraded to a high-speed digital twin technology usable on-site. The Pro system will carry out detailed analysis in rooms such as the new office building at 1F, while the BackEnd system will serve as a database to centrally manage the collected and analyzed data. This report focuses on the FrontEnd system, which will be used on-site. After point cloud measurement, the system will quickly create a 3D mesh model, estimate the radiation source from dose rate measurements, and refine the position and intensity of the estimated source using recalculation techniques (re-observation instructions and re-estimation). The results of verification tests conducted on Unit 5 are also presented. Furthermore, the report briefly discusses the future research and development plans for this project.
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06
Yamaguchi, Akiko; Kurihara, Yuichi*; Nagata, Kojiro*; Tanaka, Kazuya; Higaki, Shogo*; Kobayashi, Toru; Tanida, Hajime; Ohara, Yoshiyuki*; Yokoyama, Keiichi; Yaita, Tsuyoshi; et al.
Journal of Colloid and Interface Science, 661, p.317 - 332, 2024/05
Times Cited Count:4 Percentile:87.63(Chemistry, Physical)no abstracts in English
Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.
Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02
Times Cited Count:0 Percentile:0.00(Physics, Applied)Yamaguchi, Akiko; Nagata, Kojiro*; Kobayashi, Keita; Tanaka, Kazuya; Kobayashi, Toru; Tanida, Hajime; Shimojo, Kojiro; Sekiguchi, Tetsuhiro; Kaneta, Yui; Matsuda, Shohei; et al.
iScience (Internet), 25(8), p.104763_1 - 104763_12, 2022/08
Times Cited Count:15 Percentile:71.11(Multidisciplinary Sciences)no abstracts in English
Yamaguchi, Akiko; Nagata, Kojiro*; Tanaka, Kazuya; Kobayashi, Keita; Kobayashi, Toru; Shimojo, Kojiro; Tanida, Hajime; Sekiguchi, Tetsuhiro; Kaneta, Yui; Matsuda, Shohei; et al.
Hosha Kagaku, (45), p.28 - 30, 2022/03
no abstracts in English
Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08
Times Cited Count:1 Percentile:14.80(Instruments & Instrumentation)Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.
Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08
Times Cited Count:16 Percentile:82.28(Optics)Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:52 Percentile:96.21(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200
C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Yamada, Susumu; Machida, Masahiko; Tanaka, Minori*; Seki, Katsumi*; Arikawa, Taro*
Nihon Oyo Suri Gakkai Rombunshi, 31(1), p.20 - 43, 2021/03
no abstracts in English
Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01
Times Cited Count:4 Percentile:27.02(Physics, Applied)Tanaka, Minori*; Watabane, Masashi*; Machida, Masahiko; Yamada, Susumu; Enomoto, Yota*; Gunji, Kota*; Arikawa, Taro*
Doboku Gakkai Rombunshu, B2 (Kaigan Kogaku) (Internet), 76(2), p.I_103 - I_108, 2020/11
no abstracts in English
Wang, Y.*; Tomota, Yo*; Omura, Takahito*; Gong, W.*; Harjo, S.; Tanaka, Masahiko*
Acta Materialia, 196, p.565 - 575, 2020/09
Times Cited Count:37 Percentile:88.92(Materials Science, Multidisciplinary)Nagai, Yuki; Okumura, Masahiko; Tanaka, Akinori*
Physical Review B, 101(11), p.115111_1 - 115111_12, 2020/03
Times Cited Count:21 Percentile:74.64(Materials Science, Multidisciplinary)no abstracts in English
Myagmarjav, O.; Iwatsuki, Jin; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji; Nomura, Mikihiro*; Yamaki, Tetsuya*; Sawada, Shinichi*; et al.
International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07
Times Cited Count:18 Percentile:48.46(Chemistry, Physical)Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Arai, Takehiko*; Nakauchi, Yusuke*; Nakamura, Tomoki*; Matsuoka, Moe*; et al.
Science, 364(6437), p.272 - 275, 2019/04
Times Cited Count:286 Percentile:99.69(Multidisciplinary Sciences)The near-Earth asteroid 162173 Ryugu, the target of Hayabusa2 sample return mission, is believed to be a primitive carbonaceous object. The Near Infrared Spectrometer (NIRS3) on Hayabusa2 acquired reflectance spectra of Ryugu's surface to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micron was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally- and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:13 Percentile:98.52(Quantum Science & Technology)Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:3 Percentile:85.06(Physics, Atomic, Molecular & Chemical)Tomota, Yo*; Sekido, Nobuaki*; Xu, P. G.; Kawasaki, Takuro; Harjo, S.; Tanaka, Masahiko*; Shinohara, Takenao; Su, Y. H.; Taniyama, Akira*
Tetsu To Hagane, 103(10), p.570 - 578, 2017/10
Times Cited Count:14 Percentile:52.29(Metallurgy & Metallurgical Engineering)