Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 161

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Band gap formation in graphene by hybridization with Hex-Au(001) reconstructed surface

Terasawa, Tomoo; Matsunaga, Kazuya*; Hayashi, Naoki*; Ito, Takahiro*; Tanaka, Shinichiro*; Yasuda, Satoshi; Asaoka, Hidehito

Vacuum and Surface Science, 66(9), p.525 - 530, 2023/09

As Au (001) surfaces exhibit a quasi-one-dimensional corrugated structure, Hex-Au(001), its periodicity was predicted to change the electronic structure of graphene when graphene was grown on this surface. Furthermore, the hybridization between graphene and Au is known to introduce bandgap and spin polarization into graphene. Here, we report angle-resolved photoemission spectroscopy and density functional theory calculation of graphene on a Hex-Au(001) surface. A bandgap of 0.2 eV in the graphene Dirac cone was observed at the crossing point of the graphene Dirac cone and Au 6sp bands, indicating that the origin of the bandgap formation was the hybridization between the graphene Dirac cone and Au 6sp band. We discussed the hybridization mechanism and anticipated spin injection into the graphene Dirac cone.

Journal Articles

Band gap opening in graphene by hybridization with Au (001) reconstructed surfaces

Terasawa, Tomoo; Matsunaga, Kazuya*; Hayashi, Naoki*; Ito, Takahiro*; Tanaka, Shinichiro*; Yasuda, Satoshi; Asaoka, Hidehito

Physical Review Materials (Internet), 7(1), p.014002_1 - 014002_10, 2023/01

 Times Cited Count:4 Percentile:78.07(Materials Science, Multidisciplinary)

Au(001) surfaces exhibit a complex reconstructed structure [Hex-Au(001)] comprising a hexagonal surface and square bulk lattices, yielding a quasi-one-dimensional corrugated surface. When graphene was grown on this surface, the periodicity of the corrugated surface was predicted to change the electronic structure of graphene, forming bandgaps and new Dirac points. Furthermore, the graphene-Au interface is promising for bandgap generation and spin injection due to band hybridization. Here, we report the angle-resolved photoemission spectroscopy and density functional calculation of graphene on a Hex-Au(001) surface. The crossing point of the original and replica graphene $$pi$$ bands showed no bandgap, suggesting that the one-dimensional potential was too small to modify the electronic structure. A bandgap of 0.2 eV was observed at the crossing point of the graphene $$pi$$ and Au $$6sp$$ bands, indicating that the bandgap is generated using hybridization of the graphene $$pi$$ and Au $$6sp$$ bands. We discussed the hybridization mechanism and concluded that the R30 configuration between graphene and Au and an isolated electronic structure of Au are essential for effective hybridization between graphene and Au. We anticipate that hybridization between graphene $$pi$$ and Au $$6sp$$ would result in spin injection into graphene.

Journal Articles

Changes in sulfur metabolism in mouse brains following radon inhalation

Kanzaki, Norie; Sakoda, Akihiro; Kataoka, Takahiro*; Sun, L.*; Tanaka, Hiroshi; Otsu, Iwao*; Yamaoka, Kiyonori*

International Journal of Environmental Research and Public Health, 19(17), p.10750_1 - 10750_14, 2022/09

 Times Cited Count:0 Percentile:0(Environmental Sciences)

Reactive sulfur species (RSS) involve oxidative stress deeply and contribute anti-inflammatory effect, but no studied have focused on RSS changes after irradiation. In this study, we comprehensively analyzed the metabolites, focusing on RSS in mouse brain following radon inhalation. The ratio of oxidized glutathione to reduced glutathione and proportion of RSS in GSH or cysteine increased by radon inhalation. The sulfur ion might bind to GSH or cysteine chemically under conditions of oxidative stress, even at very low-dose exposure. We performed the overall assessment of high-dimensional data by applying machine learning and showed the specific characteristics of the effects by the exposure conditions. Our results suggested that RSS could produce a biological defense against oxidative stress following radon inhalation.

Journal Articles

Potential inhibitory effects of low-dose thoron inhalation and ascorbic acid administration on alcohol-induced hepatopathy in mice

Kataoka, Takahiro*; Ishida, Tsuyoshi*; Naoe, Shota*; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research (Internet), 63(5), p.719 - 729, 2022/09

 Times Cited Count:2 Percentile:44.25(Biology)

Journal Articles

Radon solubility and diffusion in the skin surface layer

Sakoda, Akihiro; Ishida, Tsuyoshi*; Kanzaki, Norie; Tanaka, Hiroshi; Kataoka, Takahiro*; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

International Journal of Environmental Research and Public Health, 19(13), p.7761_1 - 7761_12, 2022/07

 Times Cited Count:0 Percentile:0(Environmental Sciences)

In specific situations such as bathing in a radon spa, where the radon activity concentration in thermal water is far higher than that in air, it has been revealed that radon uptake via skin can occur and should be considered for more precise dose evaluation. The primary aim of the present study was to numerically demonstrate the distribution as well as the degree of diffusion of radon in the skin, with a focus on its surface layers (i.e., stratum corneum). We made a biokinetic model that included diffusion theory at the stratum corneum, and measured radon solubility in the stratum corneum to get a crucial parameter. The implementation of the model suggested that the diffusion coefficient in the stratum corneum was as low as general radon-proof sheets. The depth profile of radon in the skin was found to be that after a 20-minute immersion in water, the radon activity concentration at the top surface skin layer was approximately 1000 times higher than that at the viable skin layer. The information on the position of radon as a radiation source would contribute to special dose evaluation where specific target cell layers are assumed for the skin.

Journal Articles

Radon inhalation decreases DNA damage induced by oxidative stress in mouse organs via the activation of antioxidative functions

Kataoka, Takahiro*; Shuto, Hina*; Naoe, Shota*; Yano, Junki*; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Hanamoto, Katsumi*; Mitsunobu, Fumihiro*; Terato, Hiroaki*; et al.

Journal of Radiation Research (Internet), 62(5), p.861 - 867, 2021/09

 Times Cited Count:5 Percentile:53.7(Biology)

Journal Articles

Dosimetry of radon progeny deposited on skin in air and thermal water

Sakoda, Akihiro; Ishimori, Yuu; Kanzaki, Norie; Tanaka, Hiroshi; Kataoka, Takahiro*; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research (Internet), 62(4), p.634 - 644, 2021/07

 Times Cited Count:3 Percentile:36.41(Biology)

It is held that the skin dose from radon progeny is not negligibly small and that introducing cancer is a possible consequence under normal circumstances, while there are a number of uncertainties in terms of related parameters such as activity concentrations in air, target cells in skin, skin covering materials, and deposition velocities. Meanwhile, an interesting proposal emerged in that skin exposure to natural radon-rich thermal water as part of balneotherapy can produce an immune response to induce beneficial health effects. The goal of the present study was to obtain generic dose coefficients with a focus on the radon progeny deposited on the skin in air or water in relation to risk or therapeutic assessments. We thus first estimated the skin deposition velocities of radon progeny in the two media based on data from the latest human studies. Using the optimized velocities, skin dosimetry was then performed under different assumptions regarding alpha-emitting source position and target cell (i.e., basal cells or Langerhans cells). Furthermore, the impact of the radon progeny deposition on effective doses from all exposure pathways relating to "radon exposure" was assessed using various possible scenarios. It was found that in both exposure media, effective doses from radon progeny inhalation are one to four orders of magnitude higher than those from the other pathways. In addition, absorbed doses on the skin can be the highest among all pathways when the radon activity concentrations in water are two or more orders of magnitude higher than those in air.

Journal Articles

Evaluation of the redox state in mouse organs following radon inhalation

Kataoka, Takahiro*; Kanzaki, Norie; Sakoda, Akihiro; Shuto, Hina*; Yano, Junki*; Naoe, Shota*; Tanaka, Hiroshi; Hanamoto, Katsumi*; Terato, Hiroaki*; Mitsunobu, Fumihiro*; et al.

Journal of Radiation Research (Internet), 62(2), p.206 - 216, 2021/03

AA2020-0273.pdf:1.2MB

 Times Cited Count:6 Percentile:60.14(Biology)

Radon inhalation activates antioxidative functions in mouse organs, thereby contributing to inhibition of oxidative stress-induced damage. Therefore, in this study, we evaluated the redox state of various organs in mice following radon inhalation. Mice inhaled radon at concentrations of 2 or 20 kBq/m$$^{3}$$ for 1, 3, or 10 days. The relationship between antioxidative function and oxidative stress was evaluated by principal component analysis (PCA) and correlation coefficient compared with control mice subjected to sham inhalation. These findings suggested that radon inhalation altered the redox state in organs, but that the characteristics varied depending on the redox state in organs.

Journal Articles

Thermally altered subsurface material of asteroid (162173) Ryugu

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.

Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03

 Times Cited Count:44 Percentile:97.1(Astronomy & Astrophysics)

Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 $$^{circ}$$C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 $$^{circ}$$C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Comparison of antioxidative effects between radon and thoron inhalation in mouse organs

Kobashi, Yusuke*; Kataoka, Takahiro*; Kanzaki, Norie; Ishida, Tsuyoshi*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Radiation and Environmental Biophysics, 59(3), p.473 - 482, 2020/08

 Times Cited Count:5 Percentile:39.65(Biology)

Radon therapy has been traditionally performed globally for oxidative stress-related diseases. Many researchers have studied the beneficial effects of radon exposure in living organisms. However, the effects of thoron, a radioisotope of radon, have not been fully examined. In this study, we aimed to compare the biological effects of radon and thoron inhalation on mouse organs with a focus on oxidative stress. Male BALB/c mice were randomly divided into 15 groups: sham inhalation, radon inhalation at a dose of 500 Bq/m$$^{3}$$ or 2000 Bq/m$$^{3}$$, and thoron inhalation at a dose of 500 Bq/m$$^{3}$$ or 2000 Bq/m$$^{3}$$ were carried out. Immediately after inhalation, mouse tissues were excised for biochemical assays. The results showed a significant increase in superoxide dismutase and total glutathione, and a significant decrease in lipid peroxide following thoron inhalation under several conditions. Additionally, similar effects were observed for different doses and inhalation times between radon and thoron. Our results suggest that thoron inhalation also exerts antioxidative effects against oxidative stress in organs. However, the inhalation conditions should be carefully analyzed because of the differences in physical characteristics between radon and thoron.

Journal Articles

Study of biokinetics of radon progeny with thoron progeny as the isotope tracer

Sakoda, Akihiro; Kanzaki, Norie; Tanaka, Hiroshi; Kataoka, Takahiro*; Yamaoka, Kiyonori*

Nihon Kenko Kaihatsu Zasshi, (40), p.90 - 94, 2019/06

no abstracts in English

Journal Articles

The Surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Arai, Takehiko*; Nakauchi, Yusuke*; Nakamura, Tomoki*; Matsuoka, Moe*; et al.

Science, 364(6437), p.272 - 275, 2019/04

 Times Cited Count:262 Percentile:99.73(Multidisciplinary Sciences)

The near-Earth asteroid 162173 Ryugu, the target of Hayabusa2 sample return mission, is believed to be a primitive carbonaceous object. The Near Infrared Spectrometer (NIRS3) on Hayabusa2 acquired reflectance spectra of Ryugu's surface to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micron was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally- and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.

Journal Articles

Complexation of Eu(III), Pb(II), and U(VI) with a ${{it Paramecium}}$ glycoprotein; Microbial transformation of heavy elements in the aquatic environment

Kozai, Naofumi; Sakamoto, Fuminori; Tanaka, Kazuya; Onuki, Toshihiko; Sato, Takahiro*; Kamiya, Tomihiro*; Grambow, B.

Chemosphere, 196, p.135 - 144, 2018/04

 Times Cited Count:5 Percentile:17.39(Environmental Sciences)

Transformation of heavy elements by microbes such as bacteria and fungi has been an intense research subject; however, little is known about that of protozoa. This study investigated interaction of a representative protozoa, ${{it Paramecium}}$, with heavy elements (Eu(III), Pb(II), U(VI)). Non-destructive elemental analysis by micro-PIXE hardly detected those elements on living cells after sorption experiments but clearly detected on the cells that were killed with a fixative beforehand. Chromatographic analysis of aquatic species of those heavy elements after the sorption experiments revealed a fraction of those elements bound to a glycoprotein dissolved from the cell surface of living ${{it Paramecium}}$ cells to form soluble pseudocolloid. These findings suggest that complexation of heavy elements with the dissolved surface glycoprotein reduced the sorption of those heavy elements on living cells.

Journal Articles

Examination of evaluation method for fault activity based on morphological observation of fault planes

Tanaka, Yoshihiro*; Kametaka, Masao*; Okazaki, Kazuhiko*; Suzuki, Kazushige*; Seshimo, Kazuyoshi; Aoki, Kazuhiro; Shimada, Koji; Watanabe, Takahiro; Nakayama, Kazuhiko

Oyo Chishitsu, 59(1), p.13 - 27, 2018/04

This paper aims to develop a methodology for understanding the fault activity by observing exposed fault planes without covering younger strata. Based on purpose, faults developed in relatively homogeneous rocks such granitic types are investigated as follows; Gosuke Dam upstream outcrop of Gosukebashi Fault and Funasaka-nishi outcrop of Rokkou Fault were selected for the study of an active fault; and K-3 outcrop of Rokkou Houraikyo Fault was chosen for a non-active fault.

Journal Articles

Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice

Etani, Reo*; Kataoka, Takahiro*; Kanzaki, Norie*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Taguchi, Takehito*; Yamaoka, Kiyonori*

Journal of Radiation Research, 58(5), p.614 - 625, 2017/05

 Times Cited Count:13 Percentile:56.41(Biology)

Radon therapy using radon ($$^{222}$$Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Be/m$$^{3}$$ for 24 h or were provided with hot spring water for 2 weeks. The activity density of $$^{222}$$Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying).Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury.

Journal Articles

Measurements of radon activity concentration in mouse tissues and organs

Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro*; Yamaoka, Kiyonori*; Mitsunobu, Fumihiro*

Radiation and Environmental Biophysics, 56(2), p.161 - 165, 2017/05

 Times Cited Count:8 Percentile:37.74(Biology)

In order to investigate the biokinetics of inhaled radon, radon concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m$$^{3}$$ of radon in air. Radon concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon concentration in mouse blood was 0.410$$pm$$0.016 Bq/g when saturated with 1 MBq/m$$^{3}$$ of radon concentration in air. In addition, average partition coefficients obtained were 0.74$$pm$$0.19 for liver, 0.46$$pm$$0.13 for muscle, 9.09$$pm$$0.49 for adipose tissue, and 0.22$$pm$$0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

Journal Articles

Beam commissioning of the linac for iBNCT

Naito, Fujio*; Anami, Shozo*; Ikegami, Kiyoshi*; Uota, Masahiko*; Ouchi, Toshikatsu*; Onishi, Takahiro*; Oba, Toshiyuki*; Obina, Takashi*; Kawamura, Masato*; Kumada, Hiroaki*; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1244 - 1246, 2016/11

The proton linac installed in the Ibaraki Neutron Medical Research Center is used for production of the intense neutron flux for the Boron Neutron Capture Therapy (BNCT). The linac consists of the 3-MeV RFQ and the 8-MeV DTL. Design average beam current is 10mA. Target is made of Beryllium. First neutron production from the Beryllium target was observed at the end of 2015 with the low intensity beam as a demonstration. After the observation of neutron production, a lot of improvement s was carried out in order to increase the proton beam intensity for the real beam commissioning. The beam commissioning has been started on May 2016. The status of the commissioning is summarized in this report.

Journal Articles

Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice

Etani, Reo*; Kataoka, Takahiro*; Kanzaki, Norie*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research, 57(3), p.250 - 257, 2016/06

 Times Cited Count:10 Percentile:46.01(Biology)

Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. After mice inhaled radon at a concentration of 2000 Bq/m$$^{3}$$ for 24 h or were given hot spring water for 2 weeks, they were administrated PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it.

JAEA Reports

Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium, 2; (Joint research)

Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*; Kataoka, Takahiro*; Etani, Reo*

JAEA-Research 2015-024, 41 Pages, 2016/03

JAEA-Research-2015-024.pdf:3.11MB

Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. Main assignments were as follows. Based on the clinical knowledge, Misasa Medical Center (Okayama University Hospital) clarified the issues that should be addressed. Graduate School of Health Sciences (Okayama University) supervised the research and studied the biological responses. The JAEA made the development and control of a facility for radon inhalation experiments and the investigation of biokinetics and exposure doses of radon. From 2009 to 2013, the following results were obtained. (1) Literature on drinking effects of radon hot spring water was surveyed to determine the present tasks. (2) Under the present experimental conditions, drinking of hot spring water into which radon was intentionally introduced using the equipment in the facility did not have significant effects on mice. (3) Inhibitory effects of antioxidant pre-supplements (Vitamins C and E) and radon pre-inhalation on hepatic or renal oxidative damage were examined to make the comparison. (4) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon were studied. (5) Some exposure routes due to inhalation of radon or its progeny were modeled to calculate organ doses in mice.

161 (Records 1-20 displayed on this page)