Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 129

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of gas entrainment evaluation model based on distribution of pressure along vortex center line; Application to a gas entrainment experiment with traveling vortices in an open water channel flow?

Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Sakai, Takaaki*

Nuclear Engineering and Design, 432, p.113785_1 - 113785_16, 2025/02

Establishing an evaluation method for the gas entrainment (GE) of argon cover gas due to surface vortices is required in terms of safety design of sodium-cooled fast reactors. To modify the evaluation model in an in-house evaluation tool for GE, StreamViewer, a modified evaluation model on the pressure distribution along the vortex center line (PVL model) was proposed to identify the vortex center lines by connecting continuous vortex center points from the suction port to the surface and evaluate gas core length based on the balance between the hydrostatic pressure and the pressure decrease distribution along the vortex center line. PVL model was applied the three-dimensional numerical analysis results for the experiments where a plate induced unsteady traveling vortices in the open channel flow. Consequently, the GE evaluation using StreamViewer with PVL model could reproduce the relation between the inlet flow velocity and the gas core length in the unsteady vortex flow experiments.

Journal Articles

Temperature dependence of deformation and fracture in a beta titanium alloy of Ti-22V-4Al

Yano, Rei*; Tanaka, Masaki*; Yamasaki, Shigeto*; Morikawa, Tatsuya*; Tsuru, Tomohito

Materials Transactions, 65(10), p.1260 - 1267, 2024/10

 Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)

Impact tests and tensile tests were conducted between 77K and 450K in order to elucidate the temperature dependence of absorbed-impact energy, yield stress, effective shear stress, activation volume, and activation enthalpy. The impact-absorbed energy decreased with decreasing test temperature, however, this alloy did not undergo low-temperature embrittlement although it has a bcc structure. Tensile tests showed changes in both the work-hardening rate and the temperature dependence of yield stress at approximately 120 K. This suggests a change in the mechanism behind the plastic deformation at the temperature. The temperature dependence of the activation enthalpy for dislocation glide suggests that double-kink nucleation of a screw dislocation is the dominant mechanism for the dislocation glide from 150K to 200 K, while the interaction between a dislocation and solute atoms dominantly controls the dislocation glide above 200 K. Superelasticity appears in stress-strain curves tested below 120 K, suggesting that the yielding is governed by transformation-induced plasticity below 120 K. The enhanced toughness at low temperatures in these alloys is discussed from the viewpoint of dislocation shielding theory.

Journal Articles

Application of AMR method for numerical analysis of water experiment involving advective vortices

Matsushita, Kentaro; Ezure, Toshiki; Fujisaki, Tatsuya*; Imai, Yasutomo*; Tanaka, Masaaki

Nihon Kikai Gakkai 2024-Nendo Nenji Taikai Koen Rombunshu (Internet), 5 Pages, 2024/09

An evaluation method of gas entrainment phenomena due to free surface vortices has been developed for the design of a reactor vessel of sodium-cooled fast reactor. The method predicts vortex dimple using the vortex model to the flow field obtained from three dimensional hydraulic analyses of an evaluation area. In this study, the application of adaptive mesh refinement (AMR) method to a water flow experiment in a rectangular channel with advection vortices was examined to create analysis meshes automatically. Transient analyses were conducted using refined meshes obtained by AMR under different initial grid size conditions. Then, the quantities related to vortex formation and the computation cost were compared with the result in a reference mesh with uniformly fine grids. As the result, it was confirmed that the variation of the grid number is possible to use as a criterion to judge the refinement termination in AMR, and the calculated cost of transient analysis can be reduced by AMR.

Journal Articles

Temperature dependence of deformation and fracture in a beta titanium alloy of Ti-22V-4Al

Yano, Rei*; Tanaka, Masaki*; Yamasaki, Shigeto*; Morikawa, Tatsuya*; Tsuru, Tomohito

Keikinzoku, 73(10), p.497 - 503, 2023/10

Impact tests and tensile tests were conducted between 77 K and 450 K in order to elucidate the temperature dependence of absorbed-impact energy, yield stress, effective shear stress, and activation volume. The impact-absorbed energy decreased with decreasing test temperature, however, this alloy did not undergo low-temperature embrittlement although it has a bcc structure. Tensile tests showed changes in both the work-hardening rate and the temperature dependence of yield stress at approximately 120 K. This suggests a change in the mechanism behind the plastic deformation at the temperature. The temperature dependence of the activation enthalpy for dislocation glide suggests that double-kink nucleation of a screw dislocation is the dominant mechanism for the dislocation glide from 150 K to 200 K, while the interaction between a dislocation and solute atoms dominantly controls the dislocation glide above 200 K. On the other hand, superelasticity appears below 120 K, suggesting that the yielding is governed by transformation-induced plasticity below 120 K. The enhanced toughness at low temperatures in these alloys is discussed from the viewpoint of dislocation shielding theory.

Journal Articles

Development of virtual plant model for design rationalization of fast reactors by multi-level simulation system; Confirmation of functionality in application to U.S. experimental fast reactor EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Nakamine, Yoshiaki*; Fujisaki, Tatsuya*; Igawa, Kenichi*; Iida, Masaki*; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

In Japan Atomic Energy Agency, a virtual plant model of the sodium-cooled fast reactor plant composed in a computer is being developed to reduce the development cost, by replacing the experiments to the numerical simulations with coupled analyses of the physical phenomena accounting for the interaction between components under various plant conditions. Through the numerical analysis of the ULOHS test in the U.S. experimental fast reactor named EBR-II, applicability of the virtual plant model was confirmed in comparison with the measured data including the core inlet temperature and the reactor power.

Journal Articles

Development of gas entrainment evaluation method considering three-dimensional pressure decrease distribution along the center of free surface vortex

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

In design of sodium-cooled fast reactors (SFRs), cover gas entrainment phenomena induced by vortex dimple at free surface in upper plena is an important thermal-hydraulic issue. Authors have developed an evaluation method of gas entrainment with an evaluation tool named "StreamViewer". In this study, modification of evaluation model to improve quantitatively prediction accuracy of gas core length was investigated. In this model, vortex center lines which elongated from suction port where entrance of gas to heat transport system, for instance, IHX inlet in pool type SFRs, to free surface in plenum were to be identified, and distribution of pressure decrease along vortex center line was calculated to judge possibility of gas entrainment in comparisons with hydraulic head. This evaluation model was applied to results of water experiment with a rectangular open channel, where unsteady vortices are generated. It was confirmed that this model can identify occurrence of gas entrainment.

Journal Articles

Interlaboratory comparison of electron paramagnetic resonance tooth enamel dosimetry with investigations of the dose responses of the standard samples

Toyoda, Shin*; Inoue, Kazuhiko*; Yamaguchi, Ichiro*; Hoshi, Masaharu*; Hirota, Seiko*; Oka, Toshitaka; Shimazaki, Tatsuya*; Mizuno, Hideyuki*; Tani, Atsushi*; Yasuda, Hiroshi*; et al.

Radiation Protection Dosimetry, 199(14), p.1557 - 1564, 2023/09

 Times Cited Count:1 Percentile:35.82(Environmental Sciences)

Interlaboratory comparison studies are important for radiation dosimetry in order to demonstrate how the technique is universally available. The set of standard samples are examined in each participating laboratory in the present study. After a set of standard samples together with the samples with unknown doses, which were prepared in the same laboratory as the standard samples, are measured at a participating laboratory, those samples are sent to another participating laboratory for next measurement. There is some small difference observed in the sensitivity (the slope of the dose response line) of the standard samples while the differences in the obtained doses for the samples with unknown doses are rather systematic, implying that the difference is mostly due to the samples but not to measurements.

Journal Articles

Improvement of reactivity model of core deformation in plant dynamics analysis code during unprotected loss of heat sink event in EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

The benchmark analyses for the unprotected loss of heat sink (ULOHS) tests in the pool-type experimental SFR in the United States, EBR-II (BOP-301 and BOP-302R) have been conducted in order to validate the evaluation method of the reactivity feedback equipped in the plant dynamics analysis code named Super-COPD. In this study, 1D-CFD coupled analyses adding the core bowing reactivity model were conducted. Through the analysis, the applicability of the modified reactivity model was confirmed for the BOP-301 test. For the BOP-302R test, consideration of the core restraint system in the core and modeling the control rod driveline expansion reactivity was indicated.

Journal Articles

Model development of coupled THMC processes for a geological repository at higher temperature region

Takubo, Yusaku*; Takayama, Yusuke; Idiart, A.*; Tanaka, Tatsuya*; Ishida, Keisuke*; Fujisaki, Kiyoshi*

Proceedings of 2022 International High Level Radioactive Waste Management Conference (IHLRWM 2022) (Internet), p.906 - 915, 2022/11

no abstracts in English

Journal Articles

Application of 1D-CFD coupling method to unprotected loss of heat sink event in EBR-II focusing on thermal stratification in cold pool

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 10 Pages, 2022/08

To confirm the applicability of the reactivity model, the authors have been conducting the benchmark exercises of the unprotected loss of heat sink event tests in a pool-type experimental fast reactor EBR-II. In the blind phase in the benchmark analyses using the plant dynamics analysis (1D) code in which the cold pool was modeled by means of the perfect mixing volume, it was found the increase of the core inlet temperature was evaluated lower than that of the measured data and the feedback reactivity was underestimated, because the thermal stratification in the cold pool was ignored. Then, the detailed model of the cold pool for the computational fluid dynamics (CFD) code was introduced and the 1D-CFD codes coupling method was applied to the benchmark analyses. It was confirmed that both the thermal stratification in the cold pool and the increase of the core inlet temperature were successfully reproduced.

Journal Articles

Development of evaluation method of gas entrainment on the free surface in the reactor vessel in pool-type sodium-cooled fast reactors; Gas entrainment judgment based on three-dimensional evaluation of vortex center line and distribution of pressure decrease

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

Development of evaluation method for cover gas entrainment (GE) by vortices generated at free surface in upper plenum of sodium-cooled fast reactor (SFR) is required. GE evaluation tool, named StreamViewer, based on method using numerical results of three-dimensional computational fluid dynamics analysis for loop-type SFRs has been developed. In this study, modification of evaluation method of StreamViewer to rationalize conservativeness in evaluation results was examined by identifying vortex center lines and calculating three-dimensional distribution of pressure decrease along vortex center lines. The applicability of modified method was checked using water experimental result in rectangular open channel where unsteady vortices are generated. As the result, it was indicated that evaluation results on gas core depth which were excessive in current method were improved in modified method, and it is confirmed that modified method may discriminate onset of GE with appropriate criteria.

Journal Articles

Development of 1D-CFD coupling method through benchmark analyses of SHRT tests in EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Tanaka, Masaaki; Fujisaki, Tatsuya*; Murakami, Satoshi*; Vilim, R. B.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

In Japan Atomic Energy Agency, the multilevel simulation system which enables consistent evaluation from the whole plant behavior to the local phenomena is being developed to optimize plant design and enhance the safety of sodium-cooled fast reactors. To validate the coupling method in the MLS system, the 1D-CFD coupling method using Super-COPD for 1D plant dynamics analysis and Fluent for multi-dimensional CFD analysis was applied to the analyses of loss of flow tests in EBR-II. It was confirmed that it could predict multi-dimensional thermal-hydraulic phenomena such as thermal stratification in the upper plenum, Z-shaped pipe, and cold pool, holding the whole plant behavior simultaneously. Moreover, the applicability of the 1D-CFD coupling method to the evaluation of the phenomena in natural circulation conditions was confirmed by comparing the results of the 1D-CFD couple analyses and the measured data.

Journal Articles

An Automotive intelligent catalyst that contributes to hydrogen safety for the Decommissioning of Fukushima Daiichi Nuclear Power Station (1FD)

Tanaka, Hirohisa*; Masaki, Sayaka*; Aotani, Takuro*; Inagawa, Kohei*; Iwata, Sogo*; Aida, Tatsuya*; Yamamoto, Tadasuke*; Kita, Tomoaki*; Ono, Hitomi*; Takenaka, Keisuke*; et al.

SAE Technical Paper 2022-01-0534 (Internet), 10 Pages, 2022/03

Journal Articles

Long-term density-dependent groundwater flow analysis and its effect on nuclide migration for safety assessment of high-level radioactive waste disposal with consideration of interaction between fractures and matrix of rock formation in coastal crystalline groundwater systems

Park, Y.-J.*; Sawada, Atsushi; Ozutsumi, Takenori*; Tanaka, Tatsuya*; Hashimoto, Shuji*; Morita, Yutaka*

Proceedings of 3rd International Conference on Discrete Fracture Network Engineering (DFNE 2022) (Internet), 8 Pages, 2022/00

Safety analysis for underground disposal facilities for high-level radioactive waste requires thorough understanding of long-term groundwater flow and nuclide migration processes in geologic media. In the coastal subsurface systems, groundwater flow is defined by the complex interactions between freshwater of meteoric origin and denser saline water from the sea. In addition, sea levels are expected to fluctuate significantly due to a transgression and regression of the sea over the millions of years for safety analysis. This study presents long-term evolution of groundwater environment such as salinity concentration and flow velocity with focus of the interaction between fractures and matrix blocks in regional and near-field scale analysis framework for groundwater flow and nuclide migration for underground disposal facilities in hypothetical fractured crystalline coastal systems.

Journal Articles

Development of analysis method of gas entrainment phenomena from free surface due to unsteady vortex (Evaluation of three-dimensional distribution of reduction of pressure and identification of unsteady vortex center line)

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2021-Nendo Koen Rombunshu (Internet), 4 Pages, 2021/08

For evaluation of gas entrainment phenomenon at free surface in reactor vessel of sodium-cooled fast reactor, the gas entrainment evaluation tool named "Stream Viewer" has been developed. In Stream Viewer, depth of surface vortex dimple is predicted by calculating pressure decrease at the vortex center using velocity distribution around the vortex and Burgers vortex model. In this report, a method to identify continuous vortex center lines from a velocity distribution is newly developed. It becomes possible to evaluate three-dimensional distribution of pressure decrease along vortex center line. Then, the method is validated by applying Stream Viewer to an open channel experiment. As the result, it was confirmed that vortex center lines were successfully identified by the improved Stream Viewer. Moreover, it was also shown that the evaluation accuracy of gas entrainment was expected to be improved by considering distribution of pressure decrease along vortex center line.

Journal Articles

The Examination of advanced analysis method on unsteady gas entrainment vortex applying AMR method

Matsushita, Kentaro; Fujisaki, Tatsuya*; Ezure, Toshiki; Tanaka, Masaaki; Uchida, Mao*; Sakai, Takaaki*

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 26, 6 Pages, 2021/05

For the gas entrainment vortex at the free surface in sodium-cooled fast reactors, development of the numerical analysis method to evaluate amount of the gas entrainment from the free surface has been developing. In this paper, the automatic creation of analysis meshes which can suppress the calculation cost while maintaining the prediction accuracy of the vortex shape is investigated, and the adaptive mesh refinement (AMR) method is examined to the creation of analysis mesh applying to the unsteady vortex system. The refined mesh based on the criterion evaluated by vorticity, Q-value as second invariant of the velocity and the discriminant for the eigen equation of the velocity gradient tensor is considered, and it found that the AMR method based on Q-value can refine the analysis meshes most efficiently.

Journal Articles

Identification of hydrogen species on Pt/Al$$_{2}$$O$$_{3}$$ by ${it in situ}$ inelastic neutron scattering and their reactivity with ethylene

Yamazoe, Seiji*; Yamamoto, Akira*; Hosokawa, Saburo*; Fukuda, Ryoichi*; Hara, Kenji*; Nakamura, Mitsutaka; Kamazawa, Kazuya*; Tsukuda, Tatsuya*; Yoshida, Hisao*; Tanaka, Tsunehiro*

Catalysis Science & Technology, 11(1), p.116 - 123, 2021/01

 Times Cited Count:6 Percentile:25.54(Chemistry, Physical)

Journal Articles

Experimental study of Gamow-Teller transitions via the high-energy-resolution $$^{18}$$O($$^3$$He,$$t$$)$$^{18}$$F reaction; Identification of the low-energy "super" -Gamow-Teller state

Fujita, Hirohiko*; Fujita, Yoshitaka*; Utsuno, Yutaka; Yoshida, Kenichi*; Adachi, Tatsuya*; Algora, A.*; Csatl$'o$s, M.*; Deaven, J. M.*; Estevez-Aguado, E.*; Guess, C. J.*; et al.

Physical Review C, 100(3), p.034618_1 - 034618_13, 2019/09

AA2019-0318.pdf:1.1MB

 Times Cited Count:15 Percentile:79.44(Physics, Nuclear)

no abstracts in English

Journal Articles

Effect of water for the oxygen adsorption on surface of PtCo catalysts

Cui, Y.-T.*; Harada, Yoshihisa*; Niwa, Hideharu*; Oshima, Masaharu*; Hatanaka, Tatsuya*; Nakamura, Naoki*; Ando, Masaki*; Yoshida, Toshihiko*; Ishii, Kenji*; Matsumura, Daiju

NanotechJapan Bulletin (Internet), 11(4), 6 Pages, 2018/08

no abstracts in English

Journal Articles

Retreat from stress; Rattling in a planar coordination

Suekuni, Koichiro*; Lee, C. H.*; Tanaka, Hiromi*; Nishibori, Eiji*; Nakamura, Atsushi*; Kasai, Hidetaka*; Mori, Hitoshi*; Usui, Hidetomo*; Ochi, Masayuki*; Hasegawa, Takumi*; et al.

Advanced Materials, 30(13), p.1706230_1 - 1706230_6, 2018/03

 Times Cited Count:58 Percentile:89.53(Chemistry, Multidisciplinary)

Thermoelectric materials for highly efficient devices must satisfy conflicting requirements of high electrical conductivity and low thermal conductivity. In this paper, we studied the crystal structure and phonon dynamics of tetrahedrites (Cu,Zn)$$_{12}$$(Sb,As)$$_{4}$$S$$_{13}$$. The results revealed that the Cu atoms in a planar coordination are rattling, which effectively scatter phonons. These findings provide a new strategy for the development of highly efficient thermoelectric materials with planar coordination.

129 (Records 1-20 displayed on this page)