Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 69

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High-temperature rupture failure of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka

Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Decontamination and solidification treatment on spent liquid scintillation cocktail

Watanabe, So; Takahatake, Yoko; Ogi, Hiromichi*; Osugi, Takeshi; Taniguchi, Takumi; Sato, Junya; Arai, Tsuyoshi*; Kajinami, Akihiko*

Journal of Nuclear Materials, 585, p.154610_1 - 154610_6, 2023/11

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Journal Articles

Root endophytic bacterial and fungal communities in a natural hot desert are differentially regulated in dry and wet seasons by stochastic processes and functional traits

Taniguchi, Takeshi*; Isobe, Kazuo*; Imada, Shogo*; Eltayeb, M. M.*; Akaji, Yasuaki*; Nakayama, Masataka; Allen, M. F.*; Aronson, E. L.*

Science of the Total Environment, 899, p.165524_1 - 165524_13, 2023/11

 Times Cited Count:3 Percentile:80.3(Environmental Sciences)

Dryland ecosystems experience seasonal cycles of severe drought and moderate precipitation. Desert plants typically have patchy distributions, and many may develop symbiotic relationships with root endophytic microbes to survive under the repeated wet and extremely dry conditions. Although community coalescence has been found in many systems, the colonization by functional microbes and its relationship to seasonal transitions in arid regions are not well understood. Here we examined root endophytic microbial taxa, and their traits in relation to their root colonization, during the dry and wet seasons in a hot desert of the southwestern United States. We used high-throughput DNA sequencing of 16S rRNA and ITS gene profiling of five desert shrubs, and analyzed the seasonal change in endophytic microbial lineages. In summer, Actinobacteria increased, although this was not genus-specific. For fungi, Glomeraceae selectively increased in summer. In winter, Gram-negative bacterial genera, including those capable of nitrogen fixation and plant growth promotion, increased. Neutral model analysis revealed a strong stochastic influence on endophytic bacteria but a weak effect for fungi, especially in summer. The taxa with higher frequency than that predicted by the neutral model shared environmental adaptability and symbiotic traits, whereas the frequency of pathogenic fungi was at or under the predicted value. These results suggest that community assembly of bacteria and fungi is regulated differently. The bacterial community was affected by stochastic and deterministic processes via the bacterial response to drought (response trait) and beneficial effect on plants (effect trait). For fungi, mycorrhizal fungi were selected by plants in summer. The regulation of beneficial microbes by plants in both dry and wet seasons suggests the presence of plant-soil positive feedback in this natural desert ecosystem.

Journal Articles

Behavior of high-burnup BWR UO$$_{2}$$ fuel with additives under reactivity-initiated accident conditions

Mihara, Takeshi; Kakiuchi, Kazuo; Taniguchi, Yoshinori; Udagawa, Yutaka

Journal of Nuclear Science and Technology, 60(5), p.512 - 525, 2023/05

 Times Cited Count:1 Percentile:29.26(Nuclear Science & Technology)

Journal Articles

Development of nondestructive elemental analysis system for Hayabusa2 samples using muonic X-rays

Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.

ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04

 Times Cited Count:4 Percentile:92.07(Chemistry, Multidisciplinary)

The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.

Journal Articles

Follow-up experimental study on causes of the low-enthalpy failure observed in the reactivity-initiated-accident-simulated test on LWR additive fuels

Mihara, Takeshi; Kakiuchi, Kazuo; Taniguchi, Yoshinori; Udagawa, Yutaka

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

Journal Articles

Simulation of the effect of radially oriented hydride precipitates on failure limit of high-burnup BWR fuel cladding under PCMI loading

Taniguchi, Yoshinori; Mihara, Takeshi; Udagawa, Yutaka

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

Journal Articles

The Effect of base irradiation on failure behaviors of UO$$_{2}$$ and chromia-alumina additive fuels under simulated reactivity-initiated accidents; A Comparative analysis with FEMAXI-8

Udagawa, Yutaka; Mihara, Takeshi; Taniguchi, Yoshinori; Kakiuchi, Kazuo; Amaya, Masaki

Annals of Nuclear Energy, 139, p.107268_1 - 107268_9, 2020/05

AA2019-0372.pdf:0.81MB

 Times Cited Count:3 Percentile:34.82(Nuclear Science & Technology)

Journal Articles

Repeatability and reproducibility of measurements of low dissolved radiocesium concentrations in freshwater using different pre-concentration methods

Kurihara, Momo*; Yasutaka, Tetsuo*; Aono, Tatsuo*; Ashikawa, Nobuo*; Ebina, Hiroyuki*; Iijima, Takeshi*; Ishimaru, Kei*; Kanai, Ramon*; Karube, Jinichi*; Konnai, Yae*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 322(2), p.477 - 485, 2019/11

 Times Cited Count:4 Percentile:21.22(Chemistry, Analytical)

We assessed the repeatability and reproducibility of methods for determining low dissolved radiocesium concentrations in freshwater in Fukushima. Twenty-one laboratories pre-concentrated three of 10 L samples by five different pre-concentration methods (prussian-blue-impregnated filter cartridges, coprecipitation with ammonium phosphomolybdate, evaporation, solid-phase extraction disks, and ion-exchange resin columns), and activity of radiocesium was measured. The z-scores for all of the $$^{137}$$Cs results were within $$pm$$2, indicating that the methods were accurate. The relative standard deviations (RSDs) indicating the variability in the results from different laboratories were larger than the RSDs indicating the variability in the results from each separate laboratory.

Journal Articles

Behavior of LWR fuels with additives under reactivity-initiated accident conditions

Mihara, Takeshi; Udagawa, Yutaka; Amaya, Masaki; Taniguchi, Yoshinori; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.544 - 550, 2019/09

Journal Articles

Behavior of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09

Journal Articles

Hydrogen gas measurements of phosphate cement irradiated during heat treatment

Irisawa, Keita; Kudo, Isamu*; Taniguchi, Takumi; Namiki, Masahiro*; Osugi, Takeshi; Nakazawa, Osamu

QST-M-16; QST Takasaki Annual Report 2017, P. 63, 2019/03

no abstracts in English

Journal Articles

Application of phosphate modified CAC for incorporation of simulated secondary aqueous wastes in Fukushima Daiichi NPP, 1; Characterization of solidified cementitious systems with reduced water content

Garcia-Lodeiro, I.*; Lebon, R.*; Machoney, D.*; Zhang, B.*; Irisawa, Keita; Taniguchi, Takumi; Namiki, Masahiro*; Osugi, Takeshi; Meguro, Yoshihiro; Kinoshita, Hajime*

Proceedings of 3rd International Symposium on Cement-based Materials for Nuclear Wastes (NUWCEM 2018) (USB Flash Drive), 4 Pages, 2018/11

Journal Articles

Behaviors of high-burnup LWR fuels with improved materials under design-basis accident conditions

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 10 Pages, 2018/10

Journal Articles

Characterization of phosphate cement irradiated by $$gamma$$-ray during dehydration

Irisawa, Keita; Kudo, Isamu*; Taniguchi, Takumi; Namiki, Masahiro*; Osugi, Takeshi; Nakazawa, Osamu

QST-M-8; QST Takasaki Annual Report 2016, P. 63, 2018/03

A solidification technique with minimized water content is being developed using a phosphate cement for safe storage of secondary radioactive wastes in the Fukushima Daiichi Nuclear Power Plant. To understand the applicability of the solidification technique for the actual secondary wastes, phosphate cement during dehydration was irradiated by $$^{60}$$Co $$gamma$$-ray. The G(H$$_{2}$$) for the phosphate cement decreased with time during dehydration, and was not detected after 7 days. Moreover, the $$^{60}$$Co $$gamma$$-ray irradiation during dehydration did not change the crystalline and amorphous phases of the phosphate cement.

Journal Articles

Behavior of high-burnup advanced LWR fuels under design-basis accident conditions

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09

Journal Articles

Heat treatment of phosphate-modified cementitious matrices for safe storage of secondary radioactive aqueous wastes in Fukushima Daiichi Nuclear Power Plant

Irisawa, Keita; Taniguchi, Takumi; Namiki, Masahiro; Garc$'i$a-Lodeiro, I.*; Osugi, Takeshi; Sakakibara, Tetsuro; Nakazawa, Osamu; Meguro, Yoshihiro; Kinoshita, Hajime*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

A solidification technique with minimized water content is being developed using phosphate cements for the safe storage of secondary radioactive wastes in the Fukushima Daiichi Nuclear Power Plant. Conventional cement systems become solidified via hydration reactions, and need a certain water content. Phosphate cement systems, however, become solidified via an acid-base reaction, and so they only require water mainly for reasons of workability. A reduced water content of phosphate cement systems is beneficial for the immobilization of the radioactive wastes from mitigating the potential to generate hydrogen gas by the radiolysis of water by radioactive wastes. The current study investigated the water content and mineralogy of calcium aluminate cement (CAC) and phosphate-modified CAC (CAP) cured in open systems at 60, 90 and 120 $$^{circ}$$C and in a closed system at 20 $$^{circ}$$C as a reference case. Water contents in both the CAC and the CAP were seen to decrease as curing progressed. For $$geq$$ 90 $$^{circ}$$C, the CAP contained less water than CAC. Free water in CAC converted to structural water by heat treatment, but this was not the case for CAP. An orthophosphate hydrate salt, a precursor phase of hydroxyapatite, was found in CAP when cured at 20 and 60 $$^{circ}$$C, and a mixture of the orthophosphate hydrate salt and hydroxyapatite, Ca$$_{10}$$(PO$$_{4}$$)$$_{6}$$(OH)$$_{2}$$, were formed in the CAP when cured at 90 $$^{circ}$$C. Phosphate products in CAP cured at 120 $$^{circ}$$C appears to consist of a different phosphate phase compared with the CAP cured at 20, 60 and 90 $$^{circ}$$C.

Journal Articles

Behavior of high-burnup advanced LWR fuels under accident conditions

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori

Proceedings of Annual Topical Meeting on LWR Fuels with Enhanced Safety and Performance (TopFuel 2016) (USB Flash Drive), p.53 - 62, 2016/09

In order to evaluate adequacy of present safety criteria and safety margins in terms of advanced fuels and provide a database for future regulation on them, JAEA started an extensive research program called ALPS-II program, which has been sponsored by NRA, Japan. This program is primarily composed of tests simulating a RIA and a LOCA on the high-burnup advanced fuels irradiated in commercial PWR or BWR. Recently, the failure limits of the high-burnup advanced fuels under RIA conditions were investigated at NSRR, and post-test examinations on the fuel rods after the pulse irradiation tests are being performed. In terms of the simulated LOCA test, integral thermal shock tests and high temperature oxidation tests were carried out at RFEF, and the fracture limits, high temperature oxidation rate, etc. of the high-burnup advanced fuel cladding were investigated. This paper mainly describes some recent experimental results obtained in this program with respect to RIA and LOCA.

JAEA Reports

Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage; Progress report on NUMO-JAEA collaborative research in FY2011 (Joint research)

Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Hayano, Akira; Mitsui, Seiichiro; Taniguchi, Naoki; Oda, Chie; Kitamura, Akira; Osawa, Hideaki; et al.

JAEA-Research 2012-032, 298 Pages, 2012/09

JAEA-Research-2012-032.pdf:33.68MB

JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and performance assessment in preliminary investigation phase. The topics and the conducted research are follows; (1) Study on selection of host rock: in terms of hydraulic properties, items for assessing rock property, and assessment methodology of groundwater travel time has been organized with interaction from site investigation. (2) Study on development of scenario: the existing approach has been embodied, in addition, the phenomenological understanding regarding dissolution of and nuclide release from vitrified waste, corrosion of the overpack, long-term performance of the buffer are summarized. (3) Study on setting nuclide migration parameters: the approach for parameter setting has been improved for sorption and diffusion coefficient of buffer/rock, and applied and tested for parameter setting of key radionuclides. (4) Study on ensuring quality of knowledge: framework for ensuring quality of knowledge has been studied and examined aimed at the likely disposal facility condition.

Journal Articles

Effects of particle irradiations on vortex states in iron-based superconductors

Tamegai, Tsuyoshi*; Taen, Toshihiro*; Yagyuda, Hidenori*; Tsuchiya, Yuji*; Mohan, S.*; Taniguchi, Tomotaka*; Nakajima, Yasuyuki*; Okayasu, Satoru; Sasase, Masato*; Kitamura, Hisashi*; et al.

Superconductor Science and Technology, 25(8), p.084008_1 - 084008_14, 2012/08

 Times Cited Count:86 Percentile:93.27(Physics, Applied)

Various kinds of energetic particles are irradiated into iron-based superconductors, and their effects on the critical current density $$J$$$$_{rm c}$$ and vortex dynamics have been systematically studied. It is found that $$J$$$$_{rm c}$$ is enhanced and vortex dynamics is strongly suppressed by energetic particles having a sufficient energy deposition rate, similar to the case of high temperature cuprate superconductors. The enhancement of $$J$$$$_{rm c}$$, in general, persists up to much higher irradiation doses than in cuprates. However, details of the effect of irradiation depend on the kind of ion species and their energies. Even with the same ions and energies, the effect is not universal for different kinds of iron-based superconductors. The correlated nature of defects created by heavy-ion irradiation is confirmed by the angular dependence of irreversible magnetization.

69 (Records 1-20 displayed on this page)