Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Eguchi, Shohei; Shibata, Hiroshi; Imaizumi, Tomomi; Nagata, Hiroshi; Tanimoto, Masataka; Kusunoki, Tsuyoshi
JAEA-Review 2017-032, 26 Pages, 2018/02
A practical training course using the JMTR and other research infrastructures was held from July 24th to August 4th in 2017 for Asian young researchers and engineers. This course was adopted as Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) which is the project of the Japan Science and Technology Agency, and this course aims to enlarge the number of high-level nuclear researchers/engineers in Asian countries which are planning to introduce a nuclear power plant, and to promote the use of facilities in future. In this year, 10 young researchers and engineers joined the course from 6 countries. This course consists of lectures, which are related to irradiation test research, safety management of nuclear reactors, nuclear characteristics of the nuclear reactors, etc., practical training such as practice of research reactor operation using simulator and technical tour of nuclear facilities on nuclear energy. The content of this course in FY 2017 is reported in this paper.
Eguchi, Shohei; Takemoto, Noriyuki; Shibata, Hiroshi; Tanimoto, Masataka; Kusunoki, Tsuyoshi
JAEA-Review 2017-007, 32 Pages, 2017/03
A practical training course using the JMTR and other research infrastructures was held from July 25th to August 5th in 2016 for domestic and foreign young researchers and engineers. This course aims to enlarge the number of high-level nuclear researchers/engineers in Japan and foreign countries which are planning to introduce a nuclear power plant, and to promote the use of facilities in future. In this year, 13 young researchers and engineers joined the course from 7 countries. This course consists of lectures, which are related to irradiation test research, safety management of nuclear reactors, nuclear characteristics of the nuclear reactors, etc., practical training and technical tour of nuclear facilities on nuclear energy. At the end of the course, the trainees discussed the energy policy and prospect of each country, each country's research reactor, and trainee's current research. The content of this course in FY 2016 is reported in this paper.
Eguchi, Shohei; Koike, Sumio; Takemoto, Noriyuki; Tanimoto, Masataka; Kusunoki, Tsuyoshi
UTNL-R-0492, p.9_1 - 9_8, 2016/03
no abstracts in English
Watahiki, Shunsuke; Hanakawa, Hiroki; Imaizumi, Tomomi; Nagata, Hiroshi; Ide, Hiroshi; Komukai, Bunsaku; Kimura, Nobuaki; Miyauchi, Masaru; Ito, Masayasu; Nishikata, Kaori; et al.
JAEA-Technology 2013-021, 43 Pages, 2013/07
The number of research reactors in the world is decreasing because of their aging. On the other hand, the necessity of research reactor, which is used for human resources development, progress of the science and technology, industrial use and safety research is increasing for the countries which are planning to introduce the nuclear power plants. From above background, the Neutron Irradiation and Testing Reactor Center began to discuss a basic concept of Multipurpose Compact Research Reactor (MCRR) for education and training, etc., on 2010 to 2012. This activity is also expected to contribute to design tool improvement and human resource development in the center. In 2011, design study of reactor core, irradiation facilities with high versatility and practicality, and hot laboratory equipment for the production of Mo-99 was carried out. As the result of design study of reactor core, subcriticality and operation time of the reactor in consideration of an irradiation capsule, and about the transient response of the reactor to the reactivity disturbance during automatic control operation, it was possible to do automatic operation of MCRR, was confirmed. As the result of design study of irradiation facilities, it was confirmed that the implementation of an efficient mass production radioisotope Mo-99 can be expected. As the result of design study with hot laboratory facilities, Mo-99 production, RI export devised considered cell and facilities for exporting the specimens quickly was designed.
Ogura, Koichi; Nishiuchi, Mamiko; Pirozhkov, A. S.; Tanimoto, Tsuyoshi*; Sagisaka, Akito*; Esirkepov, T. Z.; Kando, Masaki; Shizuma, Toshiyuki; Hayakawa, Takehito; Kiriyama, Hiromitsu; et al.
Optics Letters, 37(14), p.2868 - 2870, 2012/07
Times Cited Count:84 Percentile:95.42(Optics)Using high contrast (10:1) and high intensity (10
W/cm
) laser pulse with the duration of 40 fs from OPCPA/Ti:Sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.
Nishiuchi, Mamiko; Pirozhkov, A. S.; Sakaki, Hironao; Ogura, Koichi; Esirkepov, T. Z.; Tanimoto, Tsuyoshi; Kanasaki, Masato; Yogo, Akifumi; Hori, Toshihiko; Sagisaka, Akito; et al.
Physics of Plasmas, 19(3), p.030706_1 - 030706_4, 2012/03
Times Cited Count:6 Percentile:24.51(Physics, Fluids & Plasmas)A 7 MeV proton beam collimated to 16 mrad containing more than particles is experimentally demonstrated by focusing a 2J, 60 fs pulse of a Ti:sapphire laser onto targets of different materials and thicknesses placed in a millimeter scale conical holder. The electric potential induced on the target holder by laser-driven electrons accelerates and dynamically controls a portion of a divergent quasi-thermal proton beam originated from the target, producing a quasi-monoenergetic "pencil" beam.
Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.
JAEA-Technology 2011-031, 123 Pages, 2012/01
The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.
Nishiuchi, Mamiko; Ogura, Koichi; Pirozhkov, A. S.; Tanimoto, Tsuyoshi; Yogo, Akifumi; Sakaki, Hironao; Hori, Toshihiko; Fukuda, Yuji; Kanasaki, Masato; Sagisaka, Akito; et al.
Proceedings of SPIE Europe Optics + Optoelectronics 2011, Vol.8079, 7 Pages, 2011/04
Times Cited Count:1 Percentile:56.32(Optics)Because of the peculiar characteristics of the laser-driven proton beam, many potential applications are proposed including establishing compact medical accelerator for the cancer therapy. For our final destination to establish the compact laser-driven proton accelerator, the experiments are performed to investigate proton and ion acceleration from thin foil targets, using a high contrast, ultra-short laser pulse from the J-KAREN laser at the Japan Atomic Energy Agency. The P-polarized laser pulse with the parameters of 800 nm, 40 fs, 4J, and with extremely high ASE contrast of 10 is focused onto the thin-foil targets with variable materials and thicknesses ranging from 100 um to sub-um. The achieved peak intensity is
10
Wcm
. The maximum proton energy is reached to 14 MeV. The number of
10 MeV protons is enough to carry 2 Gy dose onto the skin of the mouse within 10min with 10 Hz operation. This enables us to carry out in-vivo test instead of in-vitro test.
Kuramitsu, Yasuhiro*; Nakanii, Nobuhiko*; Kondo, Kiminori; Sakawa, Yoichi*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; et al.
Physical Review E, 83(2), p.026401_1 - 026401_6, 2011/02
Times Cited Count:17 Percentile:65.68(Physics, Fluids & Plasmas)An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma.
Kuramitsu, Yasuhiro*; Nakanii, Nobuhiko*; Kondo, Kiminori; Sakawa, Yoichi*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; et al.
Physics of Plasmas, 18(1), p.010701_1 - 010701_4, 2011/01
Times Cited Count:20 Percentile:62.23(Physics, Fluids & Plasmas)Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of 2.
Tampo, Motonobu; Awano, Shinya*; Bolton, P.; Kondo, Kiminori; Mima, Kunioki*; Mori, Yoshitaka*; Nakamura, Hirotaka*; Nakatsutsumi, Motoaki*; Stephens, R. B.*; Tanaka, Kazuo*; et al.
Physics of Plasmas, 17(7), p.073110_1 - 073110_5, 2010/07
Times Cited Count:12 Percentile:40.84(Physics, Fluids & Plasmas)Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.
Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05
Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.
Nakamura, Hirotaka*; Chrisman, B.*; Tanimoto, Tsuyoshi*; Borghesi, M.*; Kondo, Kiminori; Nakatsutsumi, Motoaki*; Norimatsu, Takayoshi*; Tampo, Motonobu; Tanaka, Kazuo*; Yabuuchi, Toshinori*; et al.
Physical Review Letters, 102(4), p.045009_1 - 045009_4, 2009/01
Times Cited Count:25 Percentile:74.14(Physics, Multidisciplinary)Interactions between a relativistic-intensity laser pulse and a cone-wire target are studied by changing the focusing point of the pulse. The pulse, when focused on the sidewall of the cone, produced superthermal electrons with an energy 10 MeV, whereas less energetic electrons
1 MeV were produced by the pulse when focused on the cone tip. Efficient heating of the wire was indicated by significant neutron signals observed when the pulse was focused on the tip. Particle-in-cell simulation results show reduced heating of the wire due to energetic electrons produced by specularly reflected light at the sidewall.
Nakanii, Nobuhiko*; Kondo, Kiminori; Kuramitsu, Yasuhiro*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; Tanimoto, Tsuyoshi*; et al.
Applied Physics Letters, 93(8), p.081501_1 - 081501_3, 2008/08
Times Cited Count:4 Percentile:18.32(Physics, Applied)Energetic electrons were generated by the interaction of a high-intensity laser pulse with a plasma preformed from a hollow plastic cylinder via laser-driven implosion. The spectra of a comparatively high-density plasma had a bump around 10 MeV. Simple numerical calculations explained the spectra obtained in this experiment. This indicates that the plasma tube has sufficient potential to convert a Maxwellian spectrum to a comparatively narrow spectrum.
Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.
Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06
Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.
Ogura, Koichi; Nishiuchi, Mamiko; Pirozhkov, A. S.; Tanimoto, Tsuyoshi; Esirkepov, T. Z.; Sagisaka, Akito; Kando, Masaki; Shizuma, Toshiyuki; Hayakawa, Takehito; Kiriyama, Hiromitsu; et al.
no journal, ,
Without plasma mirror, the maximum proton energy of 40 MeV is obtained using a compact, high spatiotemporal-quality, high-intensity Ti:sapphire laser system with an intensity of 1E21 W/cm/cm for the first time to our knowledge.
Nishiuchi, Mamiko; Pirozhkov, A. S.; Ogura, Koichi; Tanimoto, Tsuyoshi*; Sakaki, Hironao; Esirkepov, T. Z.; Yogo, Akifumi; Fukuda, Yuji; Kanasaki, Masato; Sagisaka, Akito; et al.
no journal, ,
Since the first observation of the energetic ion beam from the interaction between the Ultra-high intensity short pulse and solid density target, many experimental efforts have been extensively made in all over the world in order to extend the maximum energy of ions. In the past decade, the highest ion energy recorded is 67.5 MeV for the ps laser pulse from the building size single shot operation system and 25 MeV for the compact Ti:Sapphire laser system which can deliver repetitive sub-ps laser pulses. Here in this paper we present the extension of the maximum energy of protons from the interaction between the short-pulse compact laser system and soild thin-foil target. The laser parameters are 800 nm in wavelength, 40 fs of pulse width, 8 J of energy, 10 contrast and 3
m
4
m (FWHM) of focal spot. The achieved peak intensity is increased up to 10
Wcm
, which is also well confirmed by the measured electron temperature of 16 MeV.
Pirozhkov, A. S.; Ogura, Koichi; Nishiuchi, Mamiko; Esirkepov, T. Z.; Tanimoto, Tsuyoshi*; Shimomura, Takuya; Kiriyama, Hiromitsu; Bulanov, S. V.; Kondo, Kiminori
no journal, ,
We present results of the recent experiments conducted with the J-KAREN laser at KPSI, JAEA. The laser has been carefully tuned and the solid targets aligned to provide on-target irradiance of 10
W/cm
(8 J, 40 fs, 200 TW, 3 um spot). The nanosecond contrast was
and the picosecond contrast has been improved by spectral phase control using high-dynamic range TG-FROG device and Dazzler. Under such conditions, we have observed integer-order and half-integer harmonics in the specular direction, which represents interest for the plasma and preplasma diagnostics relevant to the ion acceleration experiments.
Nishiuchi, Mamiko; Ogura, Koichi; Pirozhkov, A. S.; Tanimoto, Tsuyoshi*; Sagisaka, Akito*; Esirkepov, T. Z.; Kando, Masaki; Kiriyama, Hiromitsu; Shimomura, Takuya; Kondo, Shuji; et al.
no journal, ,
We present the extension of the maximum energy of protons from the interaction between the short-pulse compact laser system and soild thin-foil target. The laser pulses with parameters of 800 nm in wavelength, 40 fs of pulse width, 7 J of energy, 10 contrast are focused onto the target with the peak intensity of more than 10
Wcm
, which is also well confirmed by the measured electron temperature of 16 MeV. The Al-0.8
m-thick or SUS-2.5
m-thick targets are irradiated from 45 degrees incidence angle. The observation of the proton beam is conducted with CR-39 stack detector set at the rear side of the target 55 mm downstream. The direction of the higher energy protons are deflected away from the target normal direction for Al-0.8
m-thick target. The most probable explanation of this is due to the deformation of the target shape caused by the ASE pedestal pulse component.
Nishiuchi, Mamiko; Ogura, Koichi; Tanimoto, Tsuyoshi*; Pirozhkov, A. S.; Sakaki, Hironao; Fukuda, Yuji; Kanasaki, Masato; Kando, Masaki; Esirkepov, T. Z.; Sagisaka, Akito*; et al.
no journal, ,
We present the extension of the maximum energy of protons from the interaction between the short-pulse compact laser system and solid thin-foil target. The laser pulses with parameters of 800 nm in wavelength, 40 fs of pulse width, 7 J of energy, 10 contrast are focused onto the target with the peak intensity of more than 10
Wcm
, which is also well confirmed by the measured electron temperature of 16 MeV. We report about the acceleration mechanism as well as future prospect on the proton acceleration experiment at JAEA.