Refine your search:     
Report No.
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

"Crystal lattice engineering", an approach to engineer protein crystal contacts by creating intermolecular symmetry; Crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines

Yamada, Hidenori*; Tamada, Taro; Kosaka, Megumi*; Miyata, Kohei*; Fujiki, Shinya*; Tano, Masaru*; Moriya, Masayuki*; Yamanishi, Mamoru*; Honjo, Eijiro; Tada, Horiko*; et al.

Protein Science, 16(7), p.1389 - 1397, 2007/07

 Times Cited Count:39 Percentile:60.31(Biochemistry & Molecular Biology)

In an attempt to control protein incorporation in a crystal lattice, a leucine zipper-like hydrophobic interface (comprising four leucine residues) was introduced into a helical region (helix 2) of the human pancreatic ribonuclease 1 (RNase 1) that was predicted to form a suitable crystallization interface. Although crystallization of wild type RNase 1 has not yet been reported, the RNase 1 mutant having four leucines (4L-RNase 1) was successfully crystallized under several different conditions. The crystal structures were subsequently determined by X-ray crystallography by molecular replacement using the structure of bovine RNase A. The overall structure of 4L-RNase 1 is quite similar to that of the bovine RNase A, and the introduced leucine residues formed the designed crystal interface. To further characterize the role of the introduced leucine residues in crystallization of RNase 1, the number of leucines was reduced to three or two (3L- and 2L-RNase 1, respectively). Both mutants crystallized and a similar hydrophobic interface as in 4L-RNase 1 was observed. A related approach to engineer crystal contacts at helix 3 of RNase 1 (N4L-RNase 1) was also evaluated. N4L-RNase 1 also successfully crystallized, and formed the expected hydrophobic packing interface. These results suggest that appropriate introduction of a leucine zipper-like hydrophobic interface can promote intra molecular symmetry for more efficient protein crystallization in crystal lattice engineering efforts.

Journal Articles

Gamow-Teller decay of the $$T=1$$ nucleus $$^{46}$$Cr

Onishi, Takeo*; Gelberg, A.*; Sakurai, Hiroyoshi*; Yoneda, Kenichiro*; Aoi, Nori*; Imai, Nobuaki*; Baba, Hidetada*; Von Brentano, P.*; Fukuda, Naoki*; Ichikawa, Yuichi*; et al.

Physical Review C, 72(2), p.024308_1 - 024308_7, 2005/08

 Times Cited Count:21 Percentile:77.98(Physics, Nuclear)

no abstracts in English

JAEA Reports

Conceptual design of solid breeder blanket system cooled by supercritical water

Enoeda, Mikio; Ohara, Yoshihiro; Akiba, Masato; Sato, Satoshi; Hatano, Toshihisa; Kosaku, Yasuo; Kuroda, Toshimasa*; Kikuchi, Shigeto*; Yanagi, Yoshihiko*; Konishi, Satoshi; et al.

JAERI-Tech 2001-078, 120 Pages, 2001/12


This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. This conceptual design study was performed to determine the updated strategy and goal of the R&D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology.

3 (Records 1-3 displayed on this page)
  • 1