検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 3 件中 1件目~3件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Ion channeling study of epitaxy of iron based Heusler alloy films on Ge(111)

前田 佳均; 鳴海 一雅; 境 誠司; 寺井 慶和*; 浜屋 宏平*; 佐道 泰造*; 宮尾 正信*

Thin Solid Films, 519(24), p.8461 - 8467, 2011/10

 被引用回数:8 パーセンタイル:36.17(Materials Science, Multidisciplinary)

We investigate the axial orientation of epitaxy of Fe$$_{2}$$CoSi with a (A, C) site preference on Ge(111) by using ion channeling, and discuss dominant factors for epitaxy of Fe$$_{2}$$MnSi and Fe$$_{2}$$CoSi on Ge(111). We conclude that each dominant factor of epitaxy of Fe$$_{2}$$MnSi and Fe$$_{2}$$CoSi on Ge(111) comes from an atomic displacement due to different preference of site occupations.

口頭

IFMIF/EVEDAターゲット系開発の現状

中村 博雄; 井田 瑞穂; 宮下 誠; 吉田 英一; 荒 邦章; 西谷 健夫; 奥村 義和; 堀池 寛*; 近藤 浩夫*; 寺井 隆幸*; et al.

no journal, , 

幅広いアプローチのもとで国際核融合材料照射施設/工学実証工学設計活動(IFMIF/EVEDA)の液体リチウム(Li)ターゲット系タスクを、日欧の国際分担及び大学等との国内連携協力で、2007年より2013年までの計画で実施中である。Liターゲット系は、ターゲットアセンブリ,Li主ループ及びLi純化系から構成されている。Liターゲットの設計要求は、重水素ビーム入射による平均1GW/m$$^{2}$$の超高熱負荷除熱のため、最大流速20m/sで長時間安定なLi流を実現することである。そのため、EVEDA Li試験ループ,計測系,純化系,腐食損耗,遠隔操作,リチウム安全取扱い等の工学実証タスク及び工学設計タスクを実施し、最終設計報告書に取りまとめ建設に備える。本報告では、日本の活動を中心に、ターゲット系開発の現状を報告する。

口頭

鉄ホイスラー合金薄膜/Ge(111)界面の低温イオンチャネリング

松倉 武偉*; 中島 孝仁*; 前田 佳均; 鳴海 一雅; 寺井 慶和*; 佐道 泰造*; 浜屋 宏平*; 宮尾 正信*

no journal, , 

本研究では、鉄ホイスラー合金薄膜/Ge(111)エピタキシャル界面での低温イオンチャネリングを行い、軸上での原子変位=動的変位(熱振動)+静的変位(格子不整合など外因変位)への温度の影響を検討した。200$$^{circ}$$C以下で行う低温分子線エピタキシャル(MBE)成長によってホイスラー合金薄膜Fe$$_{2}$$MnSi(111)($$sim$$50nm膜厚)をGe(111)上に成長させた。軸配向性を評価する最小収量:$$chi$$$$_{min}$$,臨界角$$psi$$$$_{1/2}$$は、2MeV $$^{4}$$He$$^{+}$$イオンを用い、後方散乱角165$$^{circ}$$で測定したGe$$<$$111$$>$$軸チャネリングディップ曲線から求めた。これまでの研究から、Fe$$_{2}$$MnSi/Ge界面での軸配向性は格子不整合によって支配されていることが示唆されている。測定温度が低下するにしたがって$$chi$$$$_{min}$$が減少し、$$psi$$$$_{1/2}$$が増加し、軸配向性が改善されることが明らかになった。Fe$$_{2}$$MnSi/Ge界面の熱膨張による格子不整合の変化は0.27%@300K, 0.15%@110K, 0.10%@40Kと低温で大きく減少することから、これらの軸配向性の変化(改善)は熱膨張による格子不整合の緩和(減少)によるものであると考えられる。

3 件中 1件目~3件目を表示
  • 1