Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
野崎 幹人*; 寺島 大貴*; 吉越 章隆; 細井 卓治*; 志村 考功*; 渡部 平司*
Japanese Journal of Applied Physics, 59(SM), p.SMMA07_1 - SMMA07_7, 2020/07
AlGaN/GaN高移動度トランジスタ(HEMT)はヘテロ界面に誘起される高濃度・高移動度な2次元電子ガス(2DEG)により高周波・高出力動作を実現できるが、トランジスタのノーマリーオフ化のためにはゲート下のAlGaN層を薄層化したリセス構造の形成等が必要となる。AlGaN層は誘導結合プラズマを用いた反応性イオンエッチング(ICP-RIE)により比較的容易に薄層化できるが、エッチング時の損傷による特性劣化が懸念される。本研究ではICP-RIE後のAlGaN層に対し放射光光電子分光分析やホール効果測定を行い、AlGaN/GaN構造に対する極低バイアス電力のICP-RIEが加工表面の変質や2DEG特性劣化などの加工損傷を大幅に低減できることを示した。またRIE加工面上でのMOS構造形成では、プロセス中に表面変質層が酸化されるため、界面特性が2DEG特性ほど強くバイアス電力に影響されないことがわかった。
渡邉 健太*; 寺島 大貴*; 野崎 幹人*; 山田 高寛*; 中澤 敏志*; 石田 昌宏*; 按田 義治*; 上田 哲三*; 吉越 章隆; 細井 卓治*; et al.
Japanese Journal of Applied Physics, 57(6S3), p.06KA03_1 - 06KA03_6, 2018/06
被引用回数:10 パーセンタイル:52.04(Physics, Applied)AlGaN/GaN MOS-HFETの高性能化・ノーマリオフ化には、高品質なゲート絶縁膜が必要である。これまで我々はAlO
に窒素を添加したAlON膜がAl
O
膜よりも電子注入耐性および界面特性に優れることを明らかにしている。本研究では、その良好な界面特性を維持しつつ、更に絶縁性の向上を図るため、薄いAlON界面層上にバンドギャップの広いSiO
膜を積層したSiO
/AlON/AlGaN/GaN構造について検討した。その結果、AlON界面層の厚さが約3.3nmと薄い場合でも、SiO
/AlON積層構造はAlON単層の場合と同等の容量-電圧特性を示し、良好な界面特性を示した。また、絶縁破壊電界はAlON単層と比べて2倍以上の約8MV/cmを示した。以上の結果は、SiO
/AlON積層構造が優れた界面特性と絶縁特性を両立するGaN MOSデバイス向けゲート絶縁膜として有望であることを意味している。
寺島 大貴*; 渡邉 健太*; 山田 高寛*; 野崎 幹人*; Shih, H.*; 中澤 敏志*; 按田 義治*; 上田 哲三*; 吉越 章隆; 細井 卓治*; et al.
no journal, ,
AlGaN/GaN-HFETの実現には、絶縁膜/AlGaN界面制御が重要な課題となっている。本研究ではSi(111)基板上にエピ成長したAlGaN/GaN試料上にRFプラズマCVD法およびスパッタ法によりSiO膜の成膜を行い、プラズマ投入電力や基板温度がSiO
/AlGaN界面状態および電気特性に与える影響を評価した。投入電力20WでプラズマCVD成膜した試料およびスパッタ成膜した試料のGa 2p
スペクトルは、洗浄後のAlGaN基板とほぼ一致しているのに対して、投入電力200Wで成膜した試料では高結合エネルギー側に広がっていることが放射光光電子分光測定からわかった。AlGaN基板を熱酸化した場合でも、同様のピーク形状の変化が確認されたことから、プラズマCVD成膜時の投入電力に依存してAlGaN表面が酸化すると考えられる。また、キャパシタの電気特性評価の結果、投入電力20WでプラズマCVD成膜した試料では、界面欠陥応答に起因する周波数分散がほとんど見られないのに対し、投入電力200Wの試料やスパッタ成膜した試料では顕著な周波数分散やヒステリシスが見られた。これらの結果は成膜条件(投入電力、温度)が界面特性に影響することを意味している。
渡邉 健太*; 寺島 大貴*; 野崎 幹人*; 山田 高寛*; 中澤 敏志*; 石田 昌宏*; 按田 義治*; 上田 哲三*; 吉越 章隆; 細井 卓治*; et al.
no journal, ,
AlGaN/GaN MOS-HFETの高性能化・ノーマリオフ化には、高品質なゲート絶縁膜が必要である。これまで我々はAlO
に窒素を添加したAlON膜がAl
O
膜よりも電子注入耐性および界面特性に優れることを明らかにしている。本研究では、その良好な界面特性を維持しつつ、更に絶縁性の向上を図るため、薄いAlON界面層上にバンドギャップの広いSiO
膜を積層したSiO
/AlON/AlGaN/GaN構造について検討した。その結果、AlON界面層の厚さが約3.3nmと薄い場合でも、SiO
/AlON積層構造はAlON単層の場合と同等の容量-電圧特性を示し、良好な界面特性を示した。また、絶縁破壊電界はAlON単層と比べて2倍以上の約8MV/cmを示した。以上の結果は、SiO
/AlON積層構造が優れた界面特性と絶縁特性を両立するGaN MOSデバイス向けゲート絶縁膜として有望であることを意味している。