Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06
Times Cited Count:6 Percentile:33.97(Engineering, Electrical & Electronic)The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 NbSn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.
Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Teshima, Osamu*; Matsunami, Masahiro*
IEEE Transactions on Applied Superconductivity, 24(3), p.4800604_1 - 4800604_4, 2014/06
Times Cited Count:16 Percentile:61.92(Engineering, Electrical & Electronic)Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.
IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06
Times Cited Count:11 Percentile:50.35(Engineering, Electrical & Electronic)Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 NbSn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.
Hamada, Kazuya; Kawano, Katsumi; Saito, Toru; Iguchi, Masahide; Nakajima, Hideo; Teshima, Osamu*; Matsuda, Hidemitsu*
AIP Conference Proceedings 1435, p.55 - 62, 2012/06
Times Cited Count:3 Percentile:73.50(Physics, Applied)The TF coil conductor was composed of 900 NbSn superconducting strands and 522 Cu strands protected by circular sheath tube (jacket) with the outer diameter of 43.7 mm. The jacket section is a seamless tube made of modified 316LN. JAEA tested different types of tensile specimen (Japanese Industrial Standards (JIS) type and ASTM type) cut from jacket. ASTM type specimen has longer and wider reduced section than those of JIS type specimen. Elongation of as received condition is not dependent on specimen shape. But after cold work and aging, the elongation is deteriorated due to a sensitization and scattering of elongation is larger than that of as received condition. Fracture mode of aged jacket is "cup and cone fracture", which have a mixture of inter granular at center area and trans-granular factures in circumference area. It is considered that initiation of fracture is more sensitive on test specimen shape with low ductility.
Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.
IEEE Transactions on Applied Superconductivity, 22(3), p.4801904_1 - 4801904_4, 2012/06
Times Cited Count:7 Percentile:41.24(Engineering, Electrical & Electronic)Japan Atomic Energy Agency is the first to start the mass production of the TF conductors in Phase IV in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The conductor is cable-in-conduit conductor with a central spiral. A total of 900 NbSn strands and 522 copper strands are cabled around the central spiral and then wrapped with stainless steel tape whose thickness is 0.1 mm. Approximately 60 tons of NbSn strands were manufactured by the two suppliers in December 2010. This amount corresponds to approximately 55% of the total contribution from Japan. Approximately 30% of the total contribution from Japan was completed as of February 2011. JAEA is manufacturing one conductor per month under a contract with two Japanese companies for strands, one company for cabling and one company for jacketing. This paper summarizes the technical developments including a high-level quality assurance. This progress is a significant step in the construction of the ITER machine.
Hamada, Kazuya; Takahashi, Yoshikazu; Nabara, Yoshihiro; Kawano, Katsumi; Ebisawa, Noboru; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Saito, Toru*; Nakajima, Hideo; Matsuda, Hidemitsu*; et al.
Teion Kogaku, 47(3), p.153 - 159, 2012/03
The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA has constructed newly conductor manufacturing facility. Prior to starting conductor, JAEA manufactured a 760-m long Cu dummy conductor as process qualification of dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.
Hamada, Kazuya; Nakajima, Hideo; Kawano, Katsumi; Takano, Katsutoshi; Tsutsumi, Fumiaki; Okuno, Kiyoshi; Fujitsuna, Nobuyuki*; Teshima, Osamu*
Teion Kogaku, 43(6), p.244 - 251, 2008/06
Japan Atomic Energy Agency has developed JK2LB conduit for the NbSn conductor of the ITER Central Solenoid. Mechanical requirements for the CS conductor conduit are 0.2% yield strength of more than 900 MPa and fracture toughness K (J) of more than 130 MPa after a compaction and aging heat treatment (650 C, 240 hours). In the previous work, aged JK2LB conduit has shown high strength and fracture toughness enough to satisfy the requirements. As a next step, work was performed to determine specification of the JK2LB conduit taking account of cold work including compaction and winding, and to simplify its fabrication process. To simulate the cold work effect and aging, mechanical tests were performed at 4.2 K on laboratory scale (20-30kg) ingot samples. It was found that the sum of carbon and nitrogen content should be in a range from 0.11% to 0.18% to achieve the ITER mechanical requirements. To obtain a grain size of conduit as well as that of small ingot sample, applicable solution heat treatment temperature and holding time were studied. In order to simplify the billet production process, we confirmed internal metallurgical qualities of JK2LB cast ingot. Since significant segregation was not observed, we could exclude an electroslag remelting process. Based on above achievements, full size JK2LB conduits were fabricated and satisfied the ITER mechanical requirements.
Suzuki, Yoshio; Nakajima, Norihiro; Araya, Fumimasa; Hazama, Osamu; Nishida, Akemi; Kushida, Noriyuki; Akutsu, Taku; Teshima, Naoya; Nakajima, Kohei; Kondo, Makoto; et al.
Proceedings of 16th International Conference on Nuclear Engineering (ICONE-16) (CD-ROM), 9 Pages, 2008/05
Hamada, Kazuya; Nakajima, Hideo; Matsui, Kunihiro; Kawano, Katsumi; Takano, Katsutoshi; Tsutsumi, Fumiaki; Okuno, Kiyoshi; Teshima, Osamu*; Soejima, Koji*
AIP Conference Proceedings 986, p.76 - 83, 2008/03
The ITER Toroidal Field (TF) coil and Central Solenoid (CS) use NbSn cable-in-conduit conductor. Conductor fabrication process are as follows; (1) Fabrication of jacket. (2) Butt welding of jacket to make a long tube (CS: 880 m, TF: 760 m) and insertion of superconducting cable into jacket. (3) Compaction of jacket. (4) Winding for transportation. JAEA has developed jacketing technologies in the cooperation with industries. Major achievements are as follows; (1) Full scale TF and CS jackets were fabricated using low carbon SUS316LN and boron added and high manganese stainless steel (JK2LB), respectively. The jackets satisfied ITER mechanical and dimensional requirement. (2) Butt welding condition was studied to obtain good internal surface condition of welded joint. (3) Compaction machine was constructed. As results of compaction test of TF and CS jacket, compacted jacket dimensions satisfied ITER requirement. Therefore, JAEA demonstrated jacketing technologies for ITER conductor.
Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Uno, Yasuhiro; Hamada, Kazuya; Shibutani, Kazuyuki*; et al.
no journal, ,
In the ITER project, Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 NbSn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.
Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Isono, Takaaki; Teshima, Osamu*; Matsunami, Masahiro*
no journal, ,
no abstracts in English
Ozeki, Hidemasa; Hamada, Kazuya; Nunoya, Yoshihiko; Kawano, Katsumi; Takahashi, Yoshikazu; Oshikiri, Masayuki; Saito, Toru; Matsunami, Masahiro*; Teshima, Osamu*
no journal, ,
no abstracts in English
Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Nunoya, Yoshihiko; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Takamura, Jun; Shibutani, Kazuyuki*; Chuheishi, Shinji; et al.
no journal, ,
The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 NbSn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.