Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Boznar, M. Z.*; Charnock, T. W.*; Chouhan, S. L.*; Grsic, Z.*; Halsall, C.*; Heinrich, G.*; Helebrant, J.*; Hettrich, S.*; Kua, P.*; Mancini, F.*; et al.
IAEA-TECDOC-2001, 226 Pages, 2022/06
The IAEA organized a programme from 2012 to 2015 entitled Modelling and Data for Radiological Impact Assessments (MODARIA), which aimed to improve capabilities in the field of environmental radiation dose assessment by acquiring improved data, model testing and comparison of model inputs, assumptions and outputs, reaching a consensus on modelling philosophies, aligning approaches and parameter values, developing improved methods and exchanging information. This publication describes the activities of Working Group 2, Exposures in Contaminated Urban Environments and Effect of Remedial Measures.
Takahara, Shogo; Charnock, T. W.*; Silva, K.*; Hwang, W. T.*; Lee, J.*; Yu, C.*; Kamboj, S.*; Yankovich, T.*; Thiessen, K. M.*
Journal of Radiological Protection, 42(2), p.020517_1 - 020517_13, 2022/06
Times Cited Count:0 Percentile:0.00(Environmental Sciences)State-of-the-art dose assessment models were applied to estimate doses to the population in urban areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Assessment results were compared among five models, and comparisons of model predictions with actual measurements were also made. Assessments were performed using both probabilistic and deterministic approaches. Predicted dose distributions in indoor and outdoor workers from a probabilistic approach were in good agreement with the actual measurements. In addition, when the models were applied to assess the doses to a representative person, based on a concept suggested by the International Commission on Radiological Protection (ICRP), it was evident that doses to the representative person obtained with a deterministic approach were always higher than those obtained with a probabilistic approach.
Thiessen, K. M.*; Boznar, M. Z.*; Charnock, T. W.*; Chouhan, S. L.*; Federspiel, L.; Grai
, B.*; Grsic, Z.*; Helebrant, J.*; Hettrich, S.*; Hulka, J.*; et al.
Journal of Radiological Protection, 42(2), p.020502_1 - 020502_8, 2022/06
Times Cited Count:5 Percentile:66.07(Environmental Sciences)Thiessen, K. M.*; Sazykina, T. G.*; Apostoaei, A. I.*; Balonov, M. I.*; Crawford, J.*; Domel, R.*; Fesenko, S.*; Filistovic, V.*; Galeriu, D.*; Homma, Toshimitsu; et al.
Journal of Environmental Radioactivity, 84(2), p.225 - 244, 2005/00
Times Cited Count:8 Percentile:18.97(Environmental Sciences)Data collected following the Chernobyl accident in 1986 have provided a unique opportunity to test the reliability of computer models for contamination of terrestrial and aquatic environments. The Iput River scenario was used by the Dose Reconstruction Working Group of BIOMASS. The test area was one of the most highly contaminated areas in Russia following the accident, with an average contamination density of Cs of 800, 000 Bq m
and localized contamination up to 1,500,000 Bq m
, and a variety of countermeasures that were implemented in the test area had to be considered in the modelling exercise. Difficulties encountered during the exercise included averaging of data to account for uneven contamination of the test area, simulating the downward migration and decrease in bioavailability of
Cs in soil, and modelling the effectiveness of countermeasures. The accuracy of model predictions is dependent at least in part on the experience and judgment of the participant in interpretation of input information, selection of parameter values, and treatment of uncertainties.
Thiessen, K. M.*; Napier, B. A.*; Filistovic, V.*; Homma, Toshimitsu; Kanyr, B*; Krajewski, P.*; Kryshev, A. I.*; Nedveckaite, T.*; N
nyei, A.*; Sazykina, T. G.*; et al.
Journal of Environmental Radioactivity, 84(2), p.211 - 224, 2005/00
Times Cited Count:9 Percentile:21.02(Environmental Sciences)The Hanford test scenario described an accidental release of I to the environment from the Hanford Purex Chemical Separations Plant in September 1963. Based on monitoring data collected after the release, this scenario was used by the Dose Reconstruction Working Group of BIOMASS. Predicted doses to actual children with high milk consumption ranged from 0.006 to 2 mSv. The predicted deposition at any given location varied among participants by a factor of 5 to 80. Predicted ingestion doses for children, normalized for predicted deposition, varied by about a factor of 10. The exercise provided an opportunity for comparison of assessment methods and conceptual approaches, testing model predictions against measurements, and identifying the most important contributors to uncertainty in the assessment result. Key factors affecting predictions included the approach to handling incomplete data, interpretation of input information, selection of parameter values, adjustment of models for sitespecific conditions, and treatment of uncertainties.
Thiessen, K. M.*; Napier, B. A.*; Filistovic, V.*; Homma, Toshimitsu; Kanyr, B*; Krajewski, P.*; Kryshev, A. I.*; Nedveckaite, T.*; N
nyei, A.*; Sazykina, T. G.*; et al.
Proceedings from the International Conference on Radioactivity in the Environment, p.313 - 316, 2002/09
no abstracts in English
Thiessen, K. M.*; Sazykina, T. G.*; Apostoaei, A. I.*; Balonov, M.*; Crawford, J.*; Domel, R.*; Fesenko, S.*; Filistovic, V.*; Galeriu, D.*; Homma, Toshimitsu; et al.
Proceedings from the International Conference on Radioactivity in the Environment, p.317 - 320, 2002/09
no abstracts in English