Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Preliminary combustion analyses using OpenFOAM

Thwe, T. A.; Terada, Atsuhiko; Hino, Ryutaro

JAEA-Technology 2018-012, 45 Pages, 2019/01

JAEA-Technology-2018-012.pdf:4.34MB

Under long-term storage of nuclear wastes including low- and high-level wastes, hydrogen can be spontaneously generated from corrosion of metal wastes and container wall itself, and from radiolysis of water in the waste. For the sake of hydrogen safety and the risk reduction of environmental contamination, we have started to investigate the behavior and characteristics of hydrogen combustion and explosion in waste vessel. In this report, we performed numerical simulation to investigate the characteristics of methane combustion by applying OpenFOAM. For combustion scenario, FireFoam solver with LES frame was used. As the results, the average temperature increased when the container height and inlet size increased. The simulation of gas diffusion by FireFoam results showed that helium diffused faster than hydrogen and methane. By XiFoame solver, the simulation was performed to obtain flame propagation radius for hydrogen-air premixed flame.

Journal Articles

Numerical investigation on unstable behaviors of cellular premixed flames at low Lewis numbers based on the diffusive-thermal model and compressible Navier-Stokes equations

Thwe, T. A.; Kadowaki, Satoshi; Hino, Ryutaro

Journal of Thermal Science and Technology (Internet), 13(2), p.18-00457_1 - 18-00457_12, 2018/12

Two dimensional unsteady calculations of reactive flows were performed in large domain to investigate the unstable behaviors of cellular premixed flames at low Lewis numbers based on the diffusive-thermal (D-T) model and compressible Navier-Stokes (N-S) equations. The growth rates obtained by the compressible N-S equations were large and the unstable ranges were wide compared with those obtained by the D-T model equations. When the length of computational domain increased, the number of small cells separated from large cells of the cellular flame increased drastically. The stronger unstable behaviors and the larger average burning velocities were observed especially in the numerical results based on the compressible N-S equations. In addition, the fractal dimension obtained by the compressible N-S equations was larger than that by the D-T model equations. Moreover, we confirmed that the radiative heat loss promoted the instability of premixed flames at low Lewis numbers.

Oral presentation

Effects of propane addition on the instability of lean hydrogen-air premixed flames

Thwe, T. A.; Hino, Ryutaro; Kadowaki, Satoshi*

no journal, , 

Oral presentation

Simulation of the behavior of spherically expanding H$$_{2}$$-air premixed flame

Thwe, T. A.; Hino, Ryutaro; Terada, Atsuhiko; Kadowaki, Satoshi

no journal, , 

We performed the two- and three-dimensional simulations to investigate the behavior of spherically expanding H$$_{2}$$-air premixed flame by using XiFoam. The equivalence ratio was set to unity. The ignition started from the center of domain, and the flame expanded spherically and became wrinkle. The obtained flame radius has the agreement with the experimental result.

Oral presentation

Approach to analysis of hydrogen combustion inside of radioactive waste vessels using CFD softwares based on an open source "OpenFOAM"

Thwe, T. A.; Terada, Atsuhiko; Hino, Ryutaro

no journal, , 

Since hydrogen is continuously generated and releases inside of high-level radioactive waste vessels, the awareness must be taken on the risk of hydrogen combustion and explosion. In hydrogen safety management, besides the experimental investigations, CFD approaches in predictions of flame propagation phenomena are of important role. As an approach to analysis of hydrogen combustion inside of vessels, we used the open source software, OpenFOAM and performed the simulations for propagation of H$$_{2}$$-air premixed flame. A new laminar flame speed model deduced from H$$_{2}$$-air explosion experiments by T. Katsumi et al. [Nagaoka Univ. Tech.] was implemented in the XiFoam solver and reproduced the propagation of H$$_{2}$$-air flame. Flame radius obtained by simulation agreed with the experimental results within 0.005s. Wrinkle flame formation was observed when the flame propagated outwardly as in experiments.

5 (Records 1-5 displayed on this page)
  • 1