Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 100

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

R&D of active neutron NDA techniques for nuclear nonproliferation and nuclear security, 3; Validation of neutron transport code for design of NDA system

Maeda, Makoto; Komeda, Masao; Tobita, Hiroshi; Ozu, Akira; Kureta, Masatoshi; Bogucarska, T.*; Crochemore, J. M.*; Varasano, G.*; Pedersen, B.*

Dai-37-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu (CD-ROM), 7 Pages, 2017/02

JAEA and EC/JRC are carrying out collaborative research to develop NDA techniques that can be utilized for quantification of high radioactive special nuclear materials such as spent fuel and next generation minor actinide fuels. In the research, reliability of neutron transport codes is important because it is utilized for design and development of a demonstration system of next-generation Differential Die-away (DDA) technique in JAEA. In order to evaluate the reliability, actual neutron flux distribution in a sample cavity was examined in PUNITA device using JRC type DDA technique and JAWAS-T device using JAEA type DDA technique, and then the measurement results were compared with the simulation results obtained by the neutron transport codes. The neutron flux distribution in the target matrix was also examined in the PUNITA and compared with the simulation results. We report on the measurement and simulation results of the neutron flux distribution and evaluation results of the reliability of the neutron transport codes.

Journal Articles

R&D of active neutron NDA techniques for nuclear nonproliferation and nuclear security, 2; Development of Next-Generation DDA technique

Ozu, Akira; Maeda, Makoto; Komeda, Masao; Tobita, Hiroshi; Kureta, Masatoshi

Dai-37-Kai Kaku Busshitsu Kanri Gakkai Nihon Shibu Nenji Taikai Rombunshu (CD-ROM), 9 Pages, 2017/02

no abstracts in English

Journal Articles

Evaluation of neutron flux distribution in the JAEA type and JRC type DDA systems

Maeda, Makoto; Komeda, Masao; Tobita, Hiroshi; Ozu, Akira; Kureta, Masatoshi; Bogucarska, T.*; Crochemore, J. M.*; Varasano, G.*; Pedersen, B.*

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

The JAEA and EC/JRC have started collaborative research to develop a technique that can be utilized for quantification of high radioactive special nuclear materials such as next generation minor actinide fuels. In the study of a Differential Die-Away (DDA) technique, which is one of the techniques to be improved in the collaborative research, JRC type and JAEA type DDA techniques are compared. In the JRC type DDA technique, large amount of thermal neutron is generated using D-T neutron generator and graphite moderator to accomplish high detection sensitivity for small amount of fissile material. On the other hand, in JAEA type, relatively hard neutron spectrum and moderation of neutron in the target matrix are utilized to minimize position dependence of detection efficiency. Estimation of the neutron field is important to evaluate the performance of the system in DDA technique. The purpose of this study is to validate simulation results by experimental results and evaluate neutron flux distribution in the system by the simulation and the experiment. In this paper, we present the evaluation results of the neutron flux distributions in PUNITA which utilizes JRC type DDA technique and JAWAS-T which utilizes JAEA type DDA technique obtained by Monte Carlo simulation and activation method.

Journal Articles

Development of active neutron NDA techniques for nuclear nonproliferation and nuclear security, 1; Study on next generation DDA

Kureta, Masatoshi; Maeda, Makoto; Ozu, Akira; Tobita, Hiroshi

Proceedings of INMM 57th Annual Meeting (Internet), 8 Pages, 2016/07

Under the collaboration program with EC Joint Research Center, we have carried out the R&D program "Development of active neutron NDA techniques for nuclear nonproliferation and nuclear security" with DDA (Differential Die-away Analysis), NRTA, PGA / NRCA and DGS. In this paper, we presents the outline of the current activity and study on next generation DDA. The goal of this study is to establish the DDA technique for high radiation nuclear materials with small measurement uncertainty. Lastly simulation study on newly developed prototype system "Active-N" which will be constructed at JAEA/NUCEF/BECKY facility in 2017 is presented.

Journal Articles

Applicability evaluation of candidate technologies for nuclear material quantification in fuel debris at Fukushima Daiichi Nuclear Power Station; Active neutron technique (Interim report)

Komeda, Masao; Maeda, Makoto; Furutaka, Kazuyoshi; Tobita, Hiroshi; Hattori, Kentaro; Shimofusa, Taichi; Ozu, Akira; Kureta, Masatoshi

Proceedings of INMM 57th Annual Meeting (Internet), 10 Pages, 2016/07

We are working on the development of a non-destructive assay (NDA) measurement system using the Fast Neutron Direct Interrogation (FNDI) method. The FNDI method is a kind of active neutron technique and can measure the total amounts of fissile materials (U-235, Pu-239, Pu-241). We have already carried out design analyses of an NDA measurement system for measuring the debris assuming use of the Three Mile Island (TMI) canister model. The result was presented at the Institute of Nuclear Materials Management (INMM) 56th Annual Meeting. Since then, we have modified the design of the NDA measurement system for the fuel debris and canister models at 1F. In this paper, we provide the calculation and evaluation results using the modified NDA measurement system. Moreover, we provide analytical investigations of the influence of fuel debris including high fissile material content on measurements.

Journal Articles

Demonstration result of sample assay system equipped alternative He-3 detectors

Tanigawa, Masafumi; Mukai, Yasunobu; Tobita, Hiroshi; Kurata, Noritaka*; Kobayashi, Nozomi*; Takase, Misao*; Makino, Risa; Ozu, Akira; Nakamura, Hironobu; Kurita, Tsutomu; et al.

56th Annual Meeting of the Institute of Nuclear Materials Management (INMM 2015), Vol.1, p.693 - 701, 2016/00

no abstracts in English

Journal Articles

Design study on differential die-away technique in an integrated active neutron NDA system for non-nuclear proliferation

Ozu, Akira; Maeda, Makoto; Komeda, Masao; Tobita, Hiroshi; Kureta, Masatoshi; Koizumi, Mitsuo; Seya, Michio

Proceedings of 2016 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2016) (Internet), 4 Pages, 2016/00

no abstracts in English

Journal Articles

Study on nondestructive measurement of nuclear materials in fuel debris by using fast neutron direct interrogation method

Maeda, Makoto; Furutaka, Kazuyoshi; Kureta, Masatoshi; Ozu, Akira; Tobita, Hiroshi; Komeda, Masao; Hattori, Kentaro

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12

Fukushima Daiichi Nuclear Disaster in March 11th in 2011 is considered to produce fuel debris. It is difficult to measure nondestructively the amount of fissile materials in the fuel debris since the constituents of the debris are unknown and it may contain various materials such as water, metal, and even neutron absorber. A fast neutron direct interrogation (FNDI) method, which has been developed for long years to measure uranium bearing wastes drums, can measure an amount of nuclear materials regardless of a matrix of the wastes drums. We have studied nondestructive assay for nuclear materials in fuel debris by using the FNDI method. In this paper, we report on a design study of a nondestructive measurement system for debris canister and results of the investigation on the applicability of the FNDI method to the fuel debris containing various materials using Monte Carlo simulations.

Journal Articles

Development of sample assay system equipped with $$^{3}$$He Alternative Neutron Detectors (ASAS), 1; Design and fabrication of ASAS detector

Ozu, Akira; Tobita, Hiroshi; Kureta, Masatoshi; Tanigawa, Masafumi; Mukai, Yasunobu; Nakamichi, Hideo; Nakamura, Hironobu; Kurita, Tsutomu; Seya, Michio

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12

Against the background of the serious shortage of $$^{3}$$He gas, the Japan Atomic Energy Agency (JAEA) has newly developed an alternative ZnS ceramic scintillation neutron detector for the safeguards, with the support of the government (MEXT). A demonstrator of plutonium inventory sample assay system (ASAS) has been also developed as an alternative HLNCC (High Level Neutron Coincidence Counter). The results from numerical simulations using Monte-Carlo code MCNPX showed that the fundamental performances of ASAS equipped with the 24 alternative neutron detectors, such as neutron detection efficiency and die-away time, equal to or higher than those of conventional HLNCC could be obtained. Here we present the inner mechanical structure of ASAS, together with the results of the simulating design.

Journal Articles

Development of sample assay system equipped with $$^{3}$$He Alternative Neutron Detectors (ASAS), 2; Results of ASAS measurement test

Tanigawa, Masafumi; Mukai, Yasunobu; Kurita, Tsutomu; Makino, Risa; Nakamura, Hironobu; Tobita, Hiroshi; Ozu, Akira; Kureta, Masatoshi; Seya, Michio

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12

Against the background of the serious shortage of $$^{3}$$He gas, design and development of a new detector equipped ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillation neutron detectors in JAEA, with the support of the government (the Ministry of Education, Culture, Sports, Science & Technology). The design of the alternative $$^{3}$$He detector is referred from INVS (INVentory Sample assay system (HLNCC (High Level Neutron Coincidence Counter) type)) which is being used for the verification of MOX powder etc. and is named it as ASAS (Alternative Sample Assay System). In order to prove the Pu quantitative performance as an alternative technology, several measurement tests and comparison test with INVS were conducted using ASAS. In these tests, evaluation of fundamental performance (counting efficiency and die-away time) and uncertainty evaluations were implemented. As a result, although fundamental performance of ASAS was not achieved to the one of INVS, we could confirm that ASAS has almost the same Pu quantitative performance including measurement uncertainty as that of INVS.

JAEA Reports

Design and manufacture of Joyo upper core structure for replacement

Ota, Katsu; Ushiki, Hiroshi*; Maeda, Shigetaka; Kawahara, Hirotaka; Takamatsu, Misao; Kobayashi, Tetsuhiko; Kikuchi, Yuki; Tobita, Shigeharu; Nagai, Akinori

JAEA-Technology 2015-026, 180 Pages, 2015/11

JAEA-Technology-2015-026.pdf:79.87MB

In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of "MARICO-2" (material testing rig with temperature control) had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). The replacement of the UCS was conducted from May to December 2014. The design and manufacture of UCS was started from 2008, and the installation of UCS was completed successfully in November 21th 2014. The major results gained during the design and manufacture of UCS is as follows.

Journal Articles

Demonstration result of sample assay system equipped alternative He-3 detectors

Nakamura, Hironobu; Mukai, Yasunobu; Tobita, Hiroshi; Nakamichi, Hideo; Ozu, Akira; Kureta, Masatoshi; Kurita, Tsutomu; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.45 - 53, 2015/08

JAEA conducted an R&D project to develop a new type of neutron detector using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator (as an alternative neutron detector to He-3) with support of Japanese government. The design of the JAEAs alternative system (ASAS: Alternative Sample Assay System using ceramic scintillator tubes) refers basically to the INVS (INVentory Sample assay system) which is the passive type of neutron assay system equipped total 18 He-3 tubes and capable of measuring the small amount of Pu in the MOX powder or Pu nitrate solution in a vial for nuclear material accountancy and safeguards verification. In order to prove the alternative technology and the performance instead of He-3 detector, and to establish Pu measurement capability, JAEA developed and fabricated ASAS equipped 24 alternative ceramic scintillator tubes (which is equivalent to the same counting efficiency of INVS) and demonstrated. The demonstration activity implemented the confirmation of reproducibility about sample positioning, optimization of detector parameters, counting statistical uncertainty, stability check and figure of merit (FOM) using Cf check source and actual MOX powder in PCDF (Plutonium Conversion Development Facility). In addition, performance comparison between the current INVS and the ASAS was also implemented. In this paper, we present demonstration results with design information with Monte-Carlo simulation code (MCNP).

Journal Articles

Simulation study on non-destructive assay for fuel debris by using Fast Neutron Direct Interrogation (FNDI) method

Maeda, Makoto; Furutaka, Kazuyoshi; Kureta, Masatoshi; Ozu, Akira; Tobita, Hiroshi; Komeda, Masao; Hattori, Kentaro

Proceedings of INMM 56th Annual Meeting (Internet), 8 Pages, 2015/07

In Japan Atomic Energy Agency (JAEA), it has been started that investigation on applicability of Fast Neutron Direct Interrogation (FNDI) method to fuel debris. FNDI method is expected to be promising non-destructive Assay (NDA) technique which measures total amounts of fissile materials. In this presentation, we report on basic model of non-destructive measurement system designed by using Monte Carlo Code PHITS, the effect of the matrix in debris canister on FNDI method evaluated by using Monte Carlo Code MVP and four dimensional (4 D) visualization results of neutron flux obtained by using visualization tool we have newly developed.

Journal Articles

Study on mechanism of inner duct wall failure within fuel subassembly during core disruptive accidents in an LMFBR; Results of parametric analyses for heat transfer

Toyoka, Junichi; Endo, Hiroshi*; Tobita, Yoshiharu; Takahashi, Minoru*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 13(2), p.35 - 50, 2014/05

In the design of future sodium-cooled fast reactor, a design measure to prevent severe re-criticality events even in case of core disruptive accidents is considered. This design adopts inner duct within the fuel sub-assembly that should allow molten fuel ejection out of the core region. The effectiveness of this design is dependent on failure time of the duct and it depends significantly on heat transfer from the melting core materials to the duct. In the previous study by the authors, heat transfer from molten fuel/steel mixture to the inner duct was evaluated with a computer model simulation for an in-pile experiment performed in IGR (Impulse Graphite Reactor) focusing on demonstration of the design effectiveness. In the present study, possible uncertainties in the assumption and model parameters in the previous study were evaluated so that validity of the main conclusion of the previous study could be confirmed and re-enforced. This confirmation consisted of evaluation of necessary fuel-to-steel heat transfer area, effect of hydrodynamic fragmentation of steel droplets, steel-vapor condensation heat transfer onto the duct surface and fuel crust formation. Furthermore, possible effect of variation in fuel designs and transient scenarios to the heat transfer was evaluated changing steel volume fraction as the initial boundary conditions. It was concluded that the previous study was appropriate in representing the realistic situation and the conclusions in the previous study were enforced. An additional set of analysis showed that possible under-estimation of heat transfer from fuel/steel mixture to the duct could be enhanced with a condition where steel volume fraction is less. Future model improvement is preferable for this characteristic.

Journal Articles

Evaluation of light transport property in alternative He-3 neutron detectors using ceramic scintillators by a ray-tracing simulation

Ozu, Akira; Takase, Misao*; Kurata, Noritaka*; Kobayashi, Nozomi*; Tobita, Hiroshi; Haruyama, Mitsuo; Kureta, Masatoshi; Nakamura, Tatsuya; Suzuki, Hiroyuki; To, Kentaro; et al.

Proceedings of 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference; 21st International Symposium on Room-Temperature Semiconductor X-ray and $$gamma$$-ray detectors (NSS/MIC 2014), 5 Pages, 2014/00

In Japan Atomic Energy Agency, the helium-3 alternative neutron detector using ceramic scintillators for nuclear safeguards is under development with the support of the government. The alternative detector module consists of four components: an aluminum regular square tube, a light reflecting foil put on the inner surface of the square tube, a rectangular scintillator sheet sintered on a glass plate, and two PMTs provided at both ends of the tube. The scintillator sheet is fit on the diagonal inside the square tube. The light transport property of scintillator lights inside the tube influences on the fundamental performance of the alternative detector. Therefore, the properties of the lights emitted on the surface of the scintillator sheet and scintillation lights passing through the glass plate to the PMTs in several arrangements of the scintillator in the tubes were investigated with a ray-tracing simulation. The results are described in comparison with the experimental results.

Journal Articles

A Study on mechanism of early failure of inner duct wall within fuel subassembly with high heat flux from molten core materials based on analysis of an EAGLE experiment simulating core disruptive accidents in an LMFBR

Toyoka, Junichi; Endo, Hiroshi*; Tobita, Yoshiharu; Ninokata, Hisashi*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 12(1), p.50 - 66, 2013/03

In the design of JSFR (Japan Sodium-cooled Fast Reactor), a design measure (FAIDUS: Fuel sub-Assembly with an Inner DUct Structure) is considered to prevent severe re-criticality events even in case of core disruptive accidents by molten fuel ejection out of the core region through the duct equipped within the fuel subassembly. Confirming principle effectiveness of such design measure is important. In this study, systematic heat transfer behavior of the ID1 test, which was conducted in IGR (Impulse Graphite Reactor) in Republic of Kazakhstan, was evaluated applying a heat conduction code TAC2D and a reactor safety analysis code SIMMER-III focusing on the clarification of heat transfer from high-temperature mixture of molten fuel and steel to the duct. As a result, the duct failure by high heat flux from the mixture was identified as one of an important mechanism of early duct failure in FAIDUS. It was also suggested from this study that the high heat flux from the mixture is caused by the direct contact of molten steel without the presence of fuel crust on the duct wall. Based on these findings, it is judged that the mechanism of early duct failure with high heat flux obtained in the ID1 test satisfies the required condition to FAIDUS, i.e., the inner duct of FAIDUS should fail at an early phase of core disruptive accident in advance to wrapper tube failure so that produced molten fuel can escape from the core region, and it supports feasibility of the FAIDUS concept.

Journal Articles

Residual stress measurement of large scaled welded pipe using neutron diffraction method; Effect of SCC crack propagation and repair weld on residual stress distribution

Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Toru; Morii, Yukio*

Yosetsu Gakkai Rombunshu (Internet), 29(4), p.294 - 304, 2011/12

The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in heat affected zone on the inside wall of the pipe by electro discharge method, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on outer circumference of girth weld were significantly different from residual stress distributions near the original girth weld. Membrane residual stress was increased in the axial direction since the bending moment near the heat affected zone was changed due to repair weld. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical components.

JAEA Reports

Operation and management of the Back-end Cycle Key Elements Research Facility; From April 1, 2005 to March 31, 2010

Tagami, Susumu; Shimizu, Osamu; Sano, Naruto; Imaizumi, Akiko; Tobita, Hiroshi; Nagasaki, Yosuke; Kurobane, Shiro

JAEA-Review 2010-079, 90 Pages, 2011/03

JAEA-Review-2010-079.pdf:3.02MB

The Back-end Cycle Key Elements Research Facility (BECKY) was installed in the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) in 1994 for the safety and basic studies of the nuclear fuel cycle and radioactive waste. BECKY consists of three alpha/$$gamma$$ concrete cells, three alpha/$$gamma$$ steel cells, thirty glove boxes and twenty hoods. Operation, maintenance and management are in execution based on the operational safety programs. And we also execute application about amendment of the permission and approval for the purpose of support R&D. This report describes the operation, maintenance and management from April 1, 2005 to March 31, 2010 for the purpose of keeping the performance of BECKY.

JAEA Reports

Review on technical evaluation of aging of JMTR reactor facility

Ide, Hiroshi; Tobita, Kenji; Endo, Yasuichi; Hori, Naohiko

JAEA-Review 2010-043, 80 Pages, 2010/10

JAEA-Review-2010-043.pdf:34.97MB

"Regulations Concerning the Installment, Operation, etc. of Research Reactors" was revised in February 2004. Based on the regulations, the reactor owner must perform the technical evaluation on aging if reactor operation is over 30 years. Moreover, based on the evaluation, the reactor owner must make the 10 years maintenance program concerning the action to maintain the reactor facility. Result of the technical evaluation on aging and the maintenance plan of JMTR reactor facility were reported to the MEXT in March 2005. In response to the report, the advisor meeting was held by the MEXT to evaluate the result of technical evaluation on aging and the maintenance plan. Corresponding to the meeting, we reviewed the technical evaluation result on aging and the maintenance program of JMTR reactor facility. This report summarized the review on the technical evaluation of aging of JMTR reactor facility and so on corresponding to the advisor meeting.

JAEA Reports

Conceptual design of the SlimCS fusion DEMO reactor

Tobita, Kenji; Nishio, Satoshi*; Enoeda, Mikio; Nakamura, Hirofumi; Hayashi, Takumi; Asakura, Nobuyuki; Uto, Hiroyasu; Tanigawa, Hiroyasu; Nishitani, Takeo; Isono, Takaaki; et al.

JAEA-Research 2010-019, 194 Pages, 2010/08

JAEA-Research-2010-019-01.pdf:48.47MB
JAEA-Research-2010-019-02.pdf:19.4MB

This report describes the results of the conceptual design study of the SlimCS fusion DEMO reactor aiming at demonstrating fusion power production in a plant scale and allowing to assess the economic prospects of a fusion power plant. The design study has focused on a compact and low aspect ratio tokamak reactor concept with a reduced-sized central solenoid, which is novel compared with previous tokamak reactor concept such as SSTR (Steady State Tokamak Reactor). The reactor has the main parameters of a major radius of 5.5 m, aspect ratio of 2.6, elongation of 2.0, normalized beta of 4.3, fusion out put of 2.95 GW and average neutron wall load of 3 MW/m$$^{2}$$. This report covers various aspects of design study including systemic design, physics design, torus configuration, blanket, superconducting magnet, maintenance and building, which were carried out increase the engineering feasibility of the concept.

100 (Records 1-20 displayed on this page)