Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Spontaneous debonding behaviour of reinforcement fine particles in aluminium; Toward high-strength metallic materials development

Toda, Hiroyuki*; Tsuru, Tomohito; Yamaguchi, Masatake; Matsuda, Kenji*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*

Kagaku, 75(10), p.48 - 53, 2020/10

Highly-concentrated precipitations play therefore dominant role in mechanical properties and hydrogen embrittlement of aluminum alloys. It has been considered that the coherent interface between matrix and precipitation does not contribute to the crack initiation and embrittlement due to its coherency. Here, we discovered the origin of unprecedented quasi-cleavage fracture mode. Hydrogen partitioning at various defect sites is investigated comprehensively combined with experiment, theory and first-principles calculations. We demonstrate that despite low excess free volume, the aluminum-precipitation interface is more preferable trap site than void and grain boundary. The cohesivity of the interface deteriorates significantly with increasing occupancy while hydrogen atoms are trapped stably up to extremely high occupancy equivalent to spontaneous cleavage.

Journal Articles

Hydrogen trapping in Mg$$_2$$Si and Al$$_7$$FeCu$$_2$$ intermetallic compounds in aluminum alloy; First-principles calculations

Yamaguchi, Masatake; Tsuru, Tomohito; Ebihara, Kenichi; Itakura, Mitsuhiro; Matsuda, Kenji*; Shimizu, Kazuyuki*; Toda, Hiroyuki*

Materials Transactions, 61(10), p.1907 - 1911, 2020/10

 Times Cited Count:2 Percentile:26.63(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

The Possible transition mechanism for the meta-stable phase in the 7xxx aluminium

Bendo, A.*; Matsuda, Kenji*; Nishimura, Katsuhiko*; Nunomura, Norio*; Tsuchiya, Taiki*; Lee, S.*; Marioara, C. D.*; Tsuru, Tomohito; Yamaguchi, Masatake; Shimizu, Kazuyuki*; et al.

Materials Science and Technology, 36(15), p.1621 - 1627, 2020/09

 Times Cited Count:1 Percentile:0(Materials Science, Multidisciplinary)

Metastable phases in aluminum alloys are the primary nano-scale precipitates which have the biggest contribution to the increase in the tangible mechanical properties. The continuous increase in hardness in the 7xxx aluminum alloys is associated with the phase transformation from clusters or GP-zones to the metastable $$eta'$$ phase. The transformation which is structural and compositional should occur following the path of the lowest activation energy. This work is an attempt to gain insight into how the structural transformation may occur based on the shortest route of diffusion for the eventual structure to result in that of $$eta'$$ phase. However, for the compositional transformation to occur, the proposed mechanism may not stand, since it is a prerequisite for the atoms to be at very precise positions in the aluminum lattice, at the very beginning of structural transformation, which may completely differ from that of the GP-zones atomic arrangements.

Journal Articles

Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys

Tsuru, Tomohito; Shimizu, Kazuyuki*; Yamaguchi, Masatake; Itakura, Mitsuhiro; Ebihara, Kenichi; Bendo, A.*; Matsuda, Kenji*; Toda, Hiroyuki*

Scientific Reports (Internet), 10, p.1998_1 - 1998_8, 2020/04

 Times Cited Count:5 Percentile:69.45(Multidisciplinary Sciences)

Age-hardening has been one and only process to achieve high strength aluminum alloys since unlike iron and titanium, pure aluminum does not have other solid phases during heat treatment. Highly-concentrated precipitations play therefore dominant role in mechanical properties and hydrogen embrittlement of aluminium alloys. It has been considered that the coherent interface between matrix and precipitation does not contribute to the crack initiation and embrittlement due to its coherency. Here, we discovered the origin of unprecedented quasi-cleavage fracture mode. Hydrogen partitioning at various defect sites is investigated comprehensively combined with experiment, theory and first-principles calculations. We demonstrate that despite low excess free volume, the aluminum-precipitation interface is more preferable trap site than void and grain boundary. The cohesivity of the interface deteriorates significantly with increasing occupancy while hydrogen atoms are trapped stably up to extremely high occupancy equivalent to spontaneous cleavage.

Journal Articles

An Unreported precipitate orientation relationship in Al-Zn-Mg based alloys

Bendo, A.*; Matsuda, Kenji*; Lervik, A.*; Tsuru, Tomohito; Nishimura, Katsuhiko*; Nunomura, Norio*; Holmestad, R.*; Marioara, C. D.*; Shimizu, Kazuyuki*; Toda, Hiroyuki*; et al.

Materials Characterization, 158, p.109958_1 - 109958_7, 2019/12

 Times Cited Count:9 Percentile:78.99(Materials Science, Multidisciplinary)

Characterization of precipitates in Al-Zn-Mg alloys, using a combination of electron diffraction, bright field transmission electron microscopy and atomic scale scanning transmission electron microscopy imaging revealed the presence of an unreported $$eta$$$$_{13}$$ orientation relationship between the $$eta$$-MgZn$$_2$$ phase and the Al lattice with the following orientation relationship (0001)$$eta$$ $$||$$ (120)$$_{rm Al}$$ and ($$2bar{1}bar{1}0$$)$$eta$$ $$||$$ (001)$$_{rm Al}$$, plate on (120)$$_{rm Al}$$. The precipitate interfaces were observed and analyzed along two projections 90$$^{circ}$$ to one-another. The precipitate coarsening was through the common thickening ledge mechanism. The ledges were significantly stepped along one lateral direction. An interface relaxation model using density functional theory was carried out to explain the precipitate behavior.

Journal Articles

Effect of copper addition on precipitation behavior near grain boundary in Al-Zn-Mg alloy

Matsuda, Kenji*; Yasumoto, Toru*; Bendo, A.*; Tsuchiya, Taiki*; Lee, S.*; Nishimura, Katsuhiko*; Nunomura, Norio*; Marioara, C. D.*; Lervik, A.*; Holmestad, R.*; et al.

Materials Transactions, 60(8), p.1688 - 1696, 2019/08

 Times Cited Count:5 Percentile:46.2(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Characterisation of structural similarities of precipitates in Mg-Zn and Al-Zn-Mg alloys systems

Bendo, A.*; Maeda, Tomoyoshi*; Matsuda, Kenji*; Lervik, A.*; Holmestad, R.*; Marioara, C. D.*; Nishimura, Katsuhiko*; Nunomura, Norio*; Toda, Hiroyuki*; Yamaguchi, Masatake; et al.

Philosophical Magazine, 99(21), p.2619 - 2635, 2019/07

 Times Cited Count:13 Percentile:83.11(Materials Science, Multidisciplinary)

Journal Articles

Abnormally enhanced diamagnetism in Al-Zn-Mg alloys

Nishimura, Katsuhiko*; Matsuda, Kenji*; Lee, S.*; Nunomura, Norio*; Shimano, Tomoki*; Bendo, A.*; Watanabe, Katsumi*; Tsuchiya, Taiki*; Namiki, Takahiro*; Toda, Hiroyuki*; et al.

Journal of Alloys and Compounds, 774, p.405 - 409, 2019/02

 Times Cited Count:3 Percentile:37.05(Chemistry, Physical)

Journal Articles

Optimization of mechanical properties in aluminum alloys $$via$$ hydrogen partitioning control

Toda, Hiroyuki*; Yamaguchi, Masatake; Matsuda, Kenji*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Su, H.*; Fujiwara, Hiro*; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; et al.

Tetsu To Hagane, 105(2), p.240 - 253, 2019/02

 Times Cited Count:0 Percentile:0(Metallurgy & Metallurgical Engineering)

no abstracts in English

Journal Articles

First-principles calculation of multiple hydrogen segregation along aluminum grain boundaries

Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; Matsuda, Kenji*; Toda, Hiroyuki*

Computational Materials Science, 156, p.368 - 375, 2019/01

 Times Cited Count:11 Percentile:71.82(Materials Science, Multidisciplinary)

The segregation of multiple hydrogen atoms along aluminum (Al) grain boundaries (GBs) and fracture surfaces (FSs) was investigated through first-principles calculations considering the characteristics of GBs. The results indicate that hydrogen segregation is difficult along low-energy GBs. The segregation energy of multiple hydrogen atoms along GBs and FSs and the cohesive energy was obtained for three types of high-energy Al GBs. With increasing hydrogen segregation along the GBs, the cohesive energy of the GB decreases and approaches zero with no decrease in GB segregation energy. The GB cohesive energy decreases in parallel with the volume expansion of the region of low electron density along the GB.

Journal Articles

Microstructure evolution in a hydrogen charged and aged Al-Zn-Mg alloy

Bendo, A.*; Matsuda, Kenji*; Lee, S.*; Nishimura, Katsuhiko*; Toda, Hiroyuki*; Shimizu, Kazuyuki*; Tsuru, Tomohito; Yamaguchi, Masatake

Materialia, 3, p.50 - 56, 2018/11

Journal Articles

First-principles study of hydrogen segregation at the MgZn$$_{2}$$ precipitate in Al-Mg-Zn alloys

Tsuru, Tomohito; Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro; Shiihara, Yoshinori*; Matsuda, Kenji*; Toda, Hiroyuki*

Computational Materials Science, 148, p.301 - 306, 2018/06

 Times Cited Count:21 Percentile:76.28(Materials Science, Multidisciplinary)

Hydrogen embrittlement susceptibility of high strength 7xxx series Al alloys has been recognized as the critical issues in the practical use of Al alloys. Focusing on the interface between MgZn$$_{2}$$ precipitates and an Al matrix, which is considered as one of the important segregation sites in these alloys, we investigated the stable $$eta$$-MgZn$$_{2}$$-Al interface, and the possible hydrogen trap sites in MgZn$$_{2}$$ and at the $$eta$$-MgZn$$_{2}$$-Al interface via first-principles calculation. Most of the interstitial sites inside the MgZn$$_{2}$$ crystal were not possible trap sites because their energy is relatively higher than that of other trap sites. The trap energy of the most favorable site at the $$eta$$-MgZn$$_{2}$$-Al is approximately -0.3 eV/H, which is more stable that of the interstitial site at the grain boundary. The interface between MgZn$$_{2}$$ and Al is likely to be a possible trap site in Al alloys.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2013); Development of recovery and mitigation technology on excavation damage (Contract research)

Fukaya, Masaaki*; Hata, Koji*; Akiyoshi, Kenji*; Sato, Shin*; Takeda, Yoshinori*; Miura, Norihiko*; Uyama, Masao*; Kaneda, Tsutomu*; Ueda, Tadashi*; Toda, Akiko*; et al.

JAEA-Technology 2014-040, 199 Pages, 2015/03

JAEA-Technology-2014-040.pdf:37.2MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies for restoration and/or reduction of the excavation damage. The researches on engineering technology such as verification of the initial design were being conducted by using data measured during construction as a part of the second phase of the MIU plan. Examination about the plug for reflood test in the GL-500m Access/Research Gallery-North as part of the development of technologies for restoration and/or reduction of excavation damage were carried out. Specifically, Literature survey was carried out about the plug, based on the result of literature survey, examination of the design condition, design of the plug and rock stability using numerical simulation, selection of materials for major parts, and grouting for water inflow from between rock and plug, were carried out in this study.

Journal Articles

Mitsubishi activities for advanced reactor development; Sodium-cooled Fast Reactor

Ito, Takaya*; Sato, Hiroyuki*; Usui, Yukinori*; Toda, Mikio*

Mitsubishi Juko Giho, 43(4), p.45 - 49, 2006/12

MHI has participated in the FBR development that is a national project from an initial stage as a member of fabricators. Aiming at FBR commercialization until 2050, MHI has actively contributed to "Feasibility Studies on Commercialized Fast Reactor Cycle System" performed mainly by JAEA from 1999. This time, the Sodium-cooled Fast Reactor was chosen at a national level as the main concept. This Sodium-cooled Fast Reactor is proposed by MHI, and for an economy improvement innovation technologies (reduction of the number of the loops, shortening of piping systems, integrated IHX/Pump component and so on) are adopted in this concept. From now on, research and development for FBR commercialization will be accelerated at a national level toward realization of a demonstration reactor until about 2025. MHI also challenges the project as a proposer of this concept.

Oral presentation

Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys; Experimental and computational approaches

Tsuru, Tomohito; Yamaguchi, Masatake; Itakura, Mitsuhiro; Ebihara, Kenichi; Shimizu, Kazuyuki*; Bendo, A.*; Matsuda, Kenji*; Toda, Hiroyuki*

no journal, , 

Highly concentrated precipitates generated by age hardening generally play a dominant role in shaping the mechanical properties of aluminium alloys. In such precipitates, it is commonly believed that the coherent interface between the matrix and precipitate does not contribute to crack initiation and embrittlement. We report an unexpected spontaneous fracture process associated with hydrogen embrittlement. The origin of this quasi-cleavage fracture involves hydrogen partitioning, which we comprehensively investigate through experiment, theory and first-principles calculations. Despite completely coherent interface, we show that the aluminium-precipitate interface is more preferable trap site than void, dislocation and grain boundary. The cohesivity of the interface deteriorates significantly with increasing occupancy, while hydrogen atoms are stably trapped up to an extremely high occupancy over the possible trap site.

Oral presentation

Hydrogen-accelerated cleavage in high strength aluminium alloys

Tsuru, Tomohito; Shimizu, Kazuyuki*; Yamaguchi, Masatake; Itakura, Mitsuhiro; Ebihara, Kenichi; Bendo, A.*; Matsuda, Kenji*; Toda, Hiroyuki*

no journal, , 

Age-hardening has been one and only process to achieve high strength aluminum alloys since unlike iron and titanium, pure aluminum does not have other solid phases during heat treatment. Highly-concentrated precipitations play therefore dominant role in mechanical properties and hydrogen embrittlement of aluminum alloys. It has been considered that the coherent interface between matrix and precipitation does not contribute to the crack initiation and embrittlement due to its coherency. Here, we discovered the origin of unprecedented quasi-cleavage fracture mode. Hydrogen partitioning at various defect sites is investigated comprehensively combined with experiment, theory and first-principles calculations. We demonstrate that despite low excess free volume, the aluminum-precipitation interface is more preferable trap site than void and grain boundary. The cohesivity of the interface deteriorates significantly with increasing occupancy while hydrogen atoms are trapped stably up to extremely high occupancy equivalent to spontaneous cleavage.

16 (Records 1-16 displayed on this page)
  • 1