Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Torikawa, Tomoaki*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki
Konsoryu, 36(1), p.63 - 69, 2022/03
On free surface of a sodium cooled fast reactor, gas entrainment can be caused by free surface vortices, which may result in disturbance in core power. It is important to develop an evaluation model to predict accurately entrained gas flow rate. In this study, entrained gas flow rate a simple gas entrainment experiment is conducted with focusing on effect of pressure difference between upper and lower tanks. Pressure difference between upper and lower tanks are controlled by changing gas pressure in lower tank. As a result, it is confirmed that the entrained gas flow rate increases with increasing pressure difference between upper and lower tanks. By visualization of swirling annular flow in suction pipe, it is also observed that pressure drop in suction pipe increases with increase in entrained gas flow rate, which implies that entrained gas flow rate can be predicted by evaluation model based on pressure drop in swirling annular flow region.
Torikawa, Tomoaki*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki
no journal, ,
On free surface of a sodium cooled fast reactor, gas entrainment can be caused by free surface vortices, which may result in disturbance in core power. It is important to develop an evaluation model to predict accurately entrained gas flow rate. In this study, the effect of pressure gradient in vortex axis direction on the gas entrainment flow rate is investigated in a simple gas experimental apparatus, in which upper and lower tanks are connected by a suction pipe. As a result, it was observed that there are two flow regime: swirling annular flow regime shows the tendency that only the gas entrainment flow rate increases with almost constant pressure gradient, then, when liquid plug is induced by the development of free surface disturbance, the gas entrainment flow rate increases as the pressure gradient increases. In addition, it was confirmed that the transformation of those two flow regimes is advanced by higher liquid level in the upper tank.