検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 37 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

厚板鋼材のレーザー切断技術; 廃炉の時代の先端技術開発

田村 浩司*; 遠山 伸一

日本原子力学会誌, 61(5), p.413 - 415, 2019/05

原子炉廃止措置では、原子炉構造物の切断解体が必要とされる。従来の切断法に加え、レーザー法は遠隔制御性が高くブレードなどの交換部品の必要性がないなど利点が多く、有力な選択肢となり得る。原子炉は圧力容器など100mmを超える板厚の大きい鋼材で構成されており、このような厚板鋼材の切断に関してレーザー法は知見や実績に乏しい。そこで、近年利用が進んでいる高出力ファイバーレーザーを用い、鋼材切断を様々な条件で試行した結果、原子炉に用いられるような厚板に関してもレーザー切断が可能であることを実証した。また、廃炉現場の厚板鋼材切断に適用するためロボットを用いた遠隔制御を用いた切断の技術開発を行った。本稿ではその開発成果について解説する。

論文

高出力ファイバーレーザーを用いた切断及び除染の技術開発

遠山 伸一; 峰原 英介*

デコミッショニング技報, (56), p.55 - 65, 2017/09

若狭湾エネルギー研究センター(WERC)ではレーザー技術の産業応用として、大強度ファイバーレーザーを用いた鋼材切断技術開発を行ってきた。現在は今後の国内の原子力発電所の営業停止に伴う原子力施設廃止措置に適用するための解体切断と除染について並行して技術開発を行っている。原子力施設廃止措置は、世界的にもその技術は開発途上にあるが、必要性が増しており技術開発の進展が待たれている。ファイバーレーザーは、他のレーザーと比較し取扱いが容易で、飛躍的な熱密度等の性能向上に伴い切断性能や剥離性能を持つ機器を開発することによって2次汚染や被ばくの抑制が可能となる。本報告では、原子炉解体のための厚板切断技術開発と高線量下でも稼働する除染機開発の最近の成果について、鋼材や機器の切断試験や構成機器の耐放射線試験結果を交えて示す。

報告書

分配係数の測定条件に関するアンケート調査

武部 愼一; 木村 英雄; 松鶴 秀夫; 高橋 知之*; 保田 浩志*; 内田 滋夫*; 馬原 保典*; 佐伯 明義*; 佐々木 規行*; 芦川 信雄*; et al.

JAERI-Review 2001-015, 81 Pages, 2001/05

JAERI-Review-2001-015.pdf:5.94MB

分配係数は環境中における放射性核種の移行挙動を評価するためのさまざまな移行評価モデルに用いられており、放射性廃棄物の処分における安全評価上極めて重要なパラメータである。しかし、測定条件や方法などが既定されておらず、データの相互比較ができないなどの問題が指定されている。分配係数の標準的な測定方法の提案に役立てることを目的にアンケート調査を実施した。本報告は、国内の各研究機関における、試料の採取方法や保管、前処理方法、試料の物理化学的特性に関する分析項目、並びに分配係数の測定方法とその条件等についてアンケート調査した結果をまとめたものである。

報告書

大電流電子線加速器の開発

野村 昌弘; 遠山 伸一; 田中 拓; 武井 早憲; 山崎 良雄; 平野 耕一郎; 大村 明子

JNC-TN9410 2000-007, 376 Pages, 2000/03

JNC-TN9410-2000-007.pdf:15.51MB

昭和63年10月に原子力委員会・放射性廃棄物対策専門部会で策定された「群分離・消滅処理研究技術研究開発長期計画(通称:「オメガ計画」)」に沿って、大洗工学センターでは、その計画の一部である「電子線加速器による消滅処理」の研究を実施してきた。これは、電子線加速器で作られる高エネルギーガンマ線を用いて光核反応によりセシウム、ストロンチウム等の放射性核分裂生成物を安定な核種に変換する研究であるが、この消滅処理研究を工学的な規模で実施するためには100mA-100MeV(ビーム出力10MW)級の電子線加速器が必要であると推定され、「オメガ計画」の第1期の課題である大電流電子線加速器のビーム安定化等に関する要素技術の開発として20mA-10MeV(ビーム出力200kW)を開発目標として大電流電子線加速器の開発を行ってきた。本電子線加速器は、平成2年度から高エネルギー物理学研究所、放射線医学総合研究所、大学等の協力を得て技術開発に着手、平成5年度から大電流電子線加速器の製作を開始した。その後、加速器の心臓部とも言える入射部系が完成し、性能試験を平成8年3月から9月にかけて実施した。平成9年3月には本加速器の主要設備全ての据付けが完了したが、サイクル機構の諸事情等もあり、大幅に遅れ平成11年1月から性能確認のための加速器運転を開始、平成11年12月まで継続してきた。試験結果としては、まだ開発途中であり、長時間・安定に至っていないが、ビーム出力約14kWを達成した。また、短時間であるが、ビーム出力約40kWの運転も可能とした。本報告書では、サイクル機構で開発してきた大電流電子線加速器の開発を開始当時まで振り返って、開発の経緯、要素機器の開発、設備・機器の設計、加速器の性能確認試験等の事項について、総括的にまとめた。

報告書

大電流電子線加速器利用の技術検討

武井 早憲; 田中 拓; 遠山 伸一; 長谷川 信

JNC-TN9410 2000-005, 182 Pages, 2000/03

JNC-TN9410-2000-005.pdf:5.73MB

昭和63年10月に原子力委員会・放射性廃棄物対策専門部会で策定された「群分離・消滅処理研究技術研究開発長期計画(通称:「オメガ計画」)」に沿って、大洗工学センターでは、その計画の一部である「電子線加速器による消滅処理」の研究を実施してきた。これは、電子線加速器で作られる高エネルギーガンマ線を用いて光核反応によりセシウム、ストロンチウム等の放射性核分裂生成物を安定な核種に変換する研究であるが、この消滅処理研究を工学的な規模で実施するためには100mA-100MeV(ビーム出力10MW)級の電子線加速器が必要であると推定され、「オメガ計画」の第1期の課題である大電流電子線加速器のビーム安定化等に関する要素技術の開発として20mA-10MeV(ビーム出力200kW)を開発目標として大電流電子線加速器の開発を行ってきた。本加速器は、要素機器の開発を経て平成9年3月に完成し、施設検査を受け平成11年1月より加速器の本格試験を開始した。しかし、その間にアスファルト固化施設の火災爆発事故による動燃改革論議が行われ、平成11年3月に策定した核燃料サイクル開発機構の中長期事業計画では、「加速器開発についても平成11年度末までに研究を終了します。……研究成果を取りまとめます。……開発を終えた加速器については、ビーム利用施設として、有効活用を図ります。」とされ、消滅処理を目的とした研究開発は、収束する方向を示した。本報告書では、この中長期事業計画を受け、本加速器をビーム利用施設として利用する場合、どんな利用が考えられるかの検討を行うとともに、原子力分野に限定せずにこの加速器を利用した研究課題は何があるかを広い範囲の研究者を対象に調査した。

論文

分配係数の比較実験及びアンケート調査

高橋 知之*; 武部 愼一; 木村 英雄; 松鶴 秀夫; 保田 浩志*; 内田 滋夫*; 佐伯 明義*; 馬原 保典*; 佐々木 規行*; 芦川 信雄*; et al.

KURRI-KR-44, p.169 - 176, 2000/02

分配係数は原子力施設の安全評価上極めて重要なパラメータである。原研に設けられた環境放射能挙動専念部会・安全評価用パラメータ検討グループでは、分配係数測定値の利用に関して標準的な条件を提言することを目的に各研究機関における相互比較実験等を実施してきた。本報では、各研究機関においてこれまで実施してきた分配係数測定値に与える各種の変動因子による影響について、得られた実験結果を報告するとともに、分配係数の測定条件やその条件の設定に関する考え方等についてのアンケート調査状況、並びに現在問題となっている項目や今後検討すべき課題等について報告する。

報告書

Development of accelerating unit for high beam current

中山 元林; 遠山 伸一; 野村 昌弘; 平野 耕一郎; 山崎 良雄; 佐藤 勇

JNC-TN9400 99-073, 18 Pages, 1999/08

JNC-TN9400-99-073.pdf:0.57MB

線形加速器だけでなく、円形加速器や蓄積リングを含めた大電流加速器として進行波還流型加速構造を提案する。その構造は常伝導の加速構造であるが、連続波でビーム電流を10Aまで加速することが可能である。このような加速管では大電流においてビーム不安定性による共鳴電界が発生し易く、空洞内で発生した高次モードを消すためにはビーム輸送の口径を大きくする必要がある。このような加速構造は、高効率であるだけでなく大電力入力も可能であり、また励起モードの蓄積エネルギーも非常に小さい。このような加速管は、シングルモード型と呼ばれており、円形加速器の位相安定化のためビームがRFの最適位相からずれても、空洞のデチューニングは必要としない。本報告書では、このような特徴を有する大電流加速管について、検討結果を報告する。

報告書

大強度CW電子線形加速器の現状

野村 昌弘; 遠山 伸一; 田中 拓; 武井 早憲; 山崎 良雄; 平野 耕一郎

JNC-TN9410 99-009, 22 Pages, 1999/05

JNC-TN9410-99-009.pdf:1.55MB

サイクル機構では、平成元年度から加速器を用いた核変換の可能性を探るために解決しなければならない問題の一つである大強度CW電子線形加速器の開発を行ってきた。加速器のハード開発は、平成4年度の高エネルギー物理学研究所との共同研究によりKEK Assemble Hallで行った1.2MW(CW)クライストロン及び進行波還流型加速管の要素開発から始まり、加速器施設の全設備の据え付け完了が平成8年度末となった。その後は、各要素の調整、電子銃及びRFエージングを行い、平成10年12月に施設検査に合格し、翌平成11年1月から本格的なビーム試験を開始する運びとなった。現在、ビームコミッショニングより、電流値74mA、パルス幅420$$mu$$sec、繰り返し1ppsのビームを安定して加速することができるようになった。その後約1ヶ月のビーム試験では、パルス幅を2msecまで広げ、電子銃室の放射線漏洩線量とチョッパースリット部の真空度の測定を行ない、これらの測定結果から、放射線漏洩線量と真空度は当面は問題にならないが、今後ビーム出力が100kWを越えた段階では改善の余地があることが判明した。また、この測定中にビームハローによるものと思われるDCCT用セラッミックスダクトのリークが発生した。原因は現在調査中であるが、対策としてはビーム品質の向上、モニター系及びインターロック系の整備が今後必要となる。

報告書

大電流CW電子線形加速器からの電子ビームを用いた中性子発生の検討

遠山 伸一

JNC-TN9400 99-039, 39 Pages, 1999/04

JNC-TN9400-99-039.pdf:1.6MB

サイクル機構では大電流CW電子線形加速器の開発を進めている。加速器では、スポレーションや光核反応により、中性子の発生が可能である。大電流CW電子線形加速器から発生する大電流の電子線の利用方法の一つとして、制動輻射により発生する中性子源としての利用が考えられる。実際に、数100MeVの電子線形加速器では中性子を利用する施設として用いられている場合が多い。本報告では、量子工学試験施設の大電流CW電子加速器による中性子の発生量を評価した。本加速器の現在の最大加速電子エネルギーは10MeVと低いが、設備の能力を勘案して加速し得るエネルギー17、35MeVも含め評価した。また、中性子発生標的には、通常用いられる重金属に加えて、発生しきい値の低いベリリウムを中性子発生標的として評価を行った。評価は、中性子発生効率を高めるため、標的物質の輻射長や中性子断面積から標的での電子エネルギー損失や中性子エネルギー損失が最小となる厚みを仮定し、既存の核データを用いて評価した。その結果、ベリリウムや鉛を標的として既存の加速器能力では、10MeVで1.9$$times$$10の10乗個/秒、17MeVで6.1$$times$$10の13乗個/秒、RFの増強を行ない、デューティの小さくなる35MeVで4.8$$times$$10の13乗個/秒程度のスポット中性子源が得られることが分かった。中性子収量を増大させるためには、光核反応による標的の熱除去が課題であり、そのためにしゃへいや冷却系の増強が必要となることが分かった。また、他施設との比較を行なった。結果評価で得られた中性子数では、中性子ラジオグラフィ等の照射試験のほか、鉛スペクトロメータ等による核データの測定が実施されていることが判明した。

報告書

量子工学試験施設の入射部試験に関するしゃへい評価

大村 明子; 遠山 伸一; 長谷川 信; 谷 賢

JNC-TN9410 99-011, 92 Pages, 1999/03

JNC-TN9410-99-011.pdf:1.7MB

核燃料サイクル開発機構では、核種分離・消滅処理研究(通称:オメガ計画)の一環として、高レベル放射性廃棄物の消滅処理を目的に大電流電子線形加速器の開発を行っている。このため、ビームダンプ、加速管等から漏洩する放射線に対するしゃへいに関しても、他の加速器要素と同様に大電流化に対応する必要がある。本報告書では、大電流電子線形加速器の前段部分となる、入射部の試験に関するしゃへい評価について報告する。しゃへい評価を行った結果、入射部試験時において線量当量限度以下での放射線の管理が可能であることを確認するとともに運転、メンテナンス等に対して問題がないことが分かった。

報告書

Analysis of beam acceleration and instability on TWRR accelerator structure in PNC by beam-cavity interaction

遠山 伸一

PNC-TN9410 98-075, 24 Pages, 1998/07

PNC-TN9410-98-075.pdf:0.47MB

大電流の安定加速では、ビーム発散を防止するため、荷電効果を考慮に入れることが重要である。現在動燃で開発が進められている大電流電子線形加速器は、ビーム発散閾値を小さくし、また観測された際には加速器を抑制して、ビーム発散の抑制を実験的に研究することを目的としている。今までの解析では、荷電効果によるビーム方向垂直面の発散力を数値解析し、1アンペアの電流までビーム発散が生じないことが分かっている。今回の報告では、ビーム電流による荷電効果を考慮したビーム進行方向の加速特性を解析した。まず、進行波と定在波両者の加速特性の解析式を求め、エネルギー変換効率や加速利得が計算される。次に、進行波と定在波構造の特徴を長さ1mの加速管を基準に比較する。その後、加速管の運転周波数の決定のために、エネルギー変換効率の観点からRF(高周波)加速周波数の最適化について議論する。最後に、エネルギー変換効率や加速利得の観点で、進行波還流型加速管(TWRRと呼ばれる)の特性が進行波と定在波の長所を持つことを示し、ビーム発散の一つの原因であるビーム加速方向の誘導電界をビーム-空洞相互作用から計算したロスパラメータから評価する。解析の結果、長さ1mの進行波還流型加速管は高効率が高く、ビーム進行方向のビーム発散の小さいことが分かった。今までのビーム方向垂直面の解析と併せて、全体のビーム発散も小さいことが分かった。

報告書

大電流電子線形加速器の開発;設計概要・入射部試験

江本 隆; 王 元林; 遠山 伸一; 野村 昌弘; 武井 早憲; 平野 耕一郎; 山崎 良雄; 大村 明子; 谷本 育律*; 谷 賢

PNC-TN9410 98-010, 51 Pages, 1997/12

PNC-TN9410-98-010.pdf:1.42MB

動力炉・核燃料開発事業団では、核種分離・消滅処理研究の一環として、大電流電子加速器を用いて高レベル放射性廃棄物中に含まれる長寿命核分裂生成物を消滅する可能性を研究している。電子加速器を用いて発生させた$$gamma$$線による消滅処理は、廃棄物の二次的な放射化が少ないこと、広範な加速器技術を利用できることという利点がある。以上のことを念頭に置いて、将来の消滅処理システムで必要となる加速器の大電流化技術を開発することを目的として、当面の目標をエネルギー10MeV、最大電流100mA、パルス幅4ms、繰り返し50Hzに設定し大電流電子線形加速器の開発を推進している。大電流電子線形加速器の前段部分となる、入射部の試験では、進行波加速管にビーム電流100mAのビーム負荷を加えることができた。またパルス幅が3msという長い電子ビームを安定に加速することに成功した。平成9年3月に、残りの設備を設置し、各設備の調整を経て平成9年度末から全加速器の運転試験を実施する予定である。

報告書

分配係数の相互比較実験; 実験者による測定値の差異に関する検討

高橋 知之; 武部 愼一; 木村 英雄; 松鶴 秀夫; 保田 浩志*; 内田 滋夫*; 佐伯 明義*; 馬原 保典*; 佐々木 規行*; 芦川 信雄*; et al.

JAERI-Research 97-089, 25 Pages, 1997/12

JAERI-Research-97-089.pdf:1.11MB

分配係数は、環境中における核種の移行を評価するための様々なモデルに用いられており、原子力施設の安全評価上極めて重要なパラメータである。このため「環境放射能研究委員会、環境放射能挙動専門部会」の安全評価用パラメータ検討WGでは、分配係数の測定及び利用に関する標準的方法を提言することを目的に検討を進めている。分配係数の標準的測定法を提言するための一環として、$$^{60}$$Co及び$$^{137}$$Csの分配係数の相互比較実験を複数の機関の20人で実施し、実験者による測定値の差異について検討を行った。この結果、液性がほぼ同一の実験条件においては、振とう器による場合はファクター2~3程度、ハンドシェイクの場合はファクター2以下の変動幅を示した。

報告書

Analysis of beam envelope by transverse space charge effect

遠山 伸一

PNC-TN9410 97-056, 46 Pages, 1997/09

PNC-TN9410-97-056.pdf:0.96MB

ビーム発散を防ぐため、大電流加速器では空間荷電効果を見積もることが重要である。前回のレポートでは、ビームの膨れ評価に非加速のビーム(コースティングビーム)包絡線方程式を用いた。これに替わって、より一般的な加速系での空間荷電効果を含むビームの評価は今後予定される大電流CW電子線形加速器の試験で重要である。そのため、解析の基本式である包絡線方程式の加速ビームへの一般化、パラメータの定義を行う。これによる評価は、本格的なコード計算の準備や解の予想を十分な精度で確保できるものとする。得られた 非線形の放絡線方程式を、精度が確保できるソフトウエアを用いてパーソナルコンピュータ上で数値計算する。パラメータは、電子ビームエミッタンス、電流及びエネルギーである。計算の結果により、ビームの横方向発散は、設計値では十分に小さいことが分った。ビームの拡がりは設計ビームエミッタンスの寄与が殆どである。100MeVでは、縦方向の空間荷電効果は無視できる。よって、RF供給等の問題を別として、PNCの加速構造で10Aまで縦方向空間荷電効果は大きな問題にならない。今後は、残されているビームバンチ効果を評価することが重要である。

報告書

大強度CW電子線形加速器の要素開発(VI); 入射部における電子軌道解析,1

野村 昌弘; 山崎 良雄; 遠山 伸一; 江本 隆

PNC-TN9410 94-190, 37 Pages, 1994/05

PNC-TN9410-94-190.pdf:1.21MB

大強度電子線形加速器では空間電荷効果が大きいので、この影響を最も受ける入射部の設計は非常に重要である。この入射部の主な加速器要素は200kVのDCタイプの電子銃、磁場レンズ、RFチョッパー、チョッパースリット、プリバンチャー、バンチャー及び第1加速管である。これらの要素を効率良く組み合わせて入射部を設計するための電子軌道のシミュレーションをPARMELAと呼ばれる計算コードを用いて行った。ただしPARMELAでは磁場レンズやRFチョッパーは計算できないので大幅な改造を行った。本報告書では、電子銃からソレノイドコイルまで、RFチョッパーからチョッパースリットまでとこれらを合わせた電子銃からチョッパースリットまでの3つのシミュレーション結果を報告する。これらのシミュレーション結果から、電子銃とソレノイドコイルの間に2台の磁場レンズを挿入することによりエミッタンスの増加を低く押さえられること、今回考案した新しいチョッパーシステムを用いることにより入射部出口でのエミッタンスを10$$pi$$mmmrad程度まで押さえられること等が確かめられた。

報告書

大電流CW電子線形加速器の要素開発(IV) -加速管クライストロン窓大電力RF試験速報-

遠山 伸一; 江本 隆; 平野 耕一郎; 尾下 博教; 野村 昌弘; 武井 早憲; 高橋 伸友

PNC-TN9430 93-002, 43 Pages, 1993/01

PNC-TN9430-93-002.pdf:1.44MB

標記加速器の開発のための主要機器の加速管,クライストロンなどの設計研究及び試作を行い,これら試作機器の大電力RFでの性能評価試験を行った。すでに試作したクライストロンを大電力RF源として,クライストロン,加速管及びクライストロン用RF出力窓の試験体系を構築し,評価試験を行った。1)加速管では,目標の800kWまでのRF電力を安定に印加することができ,ビーム無負荷での目的をほぼ達成した,2)クライストロン出力窓では,目標以上の最大1.7MW,Lバンドでは世界最大級の大電力に耐える窓の開発に成功した,などを報告した。

論文

大電流電子線形加速器の開発

遠山 伸一; 谷 賢

動燃技報, 0 Pages, 1993/00

オメガ計画の一環として、動燃で長寿命核分裂発生生成物を加速器により消滅処理する可能性を検討している。将来の消滅処理システムで必要となる加速器の大電流化技術を開発することを目的として、大電流電子線形加速器を設計し、その構成要素であるクライストロン、加速管等の試作・評価を実施した。本加速器のエネルギーは10MeVであるが、最大/平均ビーム電流が100mA/20mAと既存の加速器に比べて極めて高い点に特徴がある。試作機器による大電力試験の結果、全般的に良好な特徴を示し、開発目標を達成できる見通しが得られた。本年度から加速器要素の本格的な製作を開始し、平成8年度には全ての要素・機器の据え付けを終了する予定である。

報告書

大電流CW電子線形加速器コントロールシステムの予備検討

遠山 伸一

PNC-TN9410 92-234, 22 Pages, 1992/08

PNC-TN9410-92-234.pdf:0.58MB

〔目的〕大強度CW電子線形加速器では,既存の加速器より数桁大きい電流の電子ビームを加速する必要があり,このために加速器の要素開発を進めているが,これら同様に大電子ビームを安定に加速するための計測制御システムの最適化設計も重要な課題である。そこで,その最適化設計のための予備調査と検討を行う。〔方法〕既存加速器の計測制御手法を,線形加速器に留まらずサイクロトロン,シンクロトロンも含めて主に文献に基づいて調査し,その結果から大強度CW電子線形加速器の計測制御系の予備検討を行った。〔結果〕計測制御系では,オペレータを補助すると共にオペレータへ判断材料を提供できるように,加速されるビームの状態を高速で検知し,それを内部処理する機能を有するものとした。さらにシステムの拡張,運転・保守の容易化のため,計測制御系を設備毎に4段階に階層化した。〔結論〕大強度CW電子線形加速器の計測制御系に,必要なモニタ類や詳細な設計のためのビームローディング変化に対応できる計測制御系の階層化分類を得た。

報告書

大強度CW電子線形加速器の要素開発(I) -大電流電子銃の開発(1)-

野村 昌弘; 遠山 伸一; 加藤 裕子*; 早川 健; 田中 俊成

PNC-TN9410 92-213, 27 Pages, 1992/08

PNC-TN9410-92-213.pdf:0.64MB

現在高出力の電子線加速器の開発を目的に試験用の大強度CW(連続波)加速器の研究開発を行っている。この研究開発に伴いクライストロン,加速管,電子銃等の要素開発を行っている。その中でも加速器の最大電流は電子銃で決まると言われている程電子銃は加速器の重要な構成要素の一つである。特に大電流加速器の場合にはその重要性は非常に高くなる。本報はこの重要な電子銃の開発の現状について書かれたものである。内容は,電子銃を構成する構成要素の中でも特に重要なカソードの材質及び電子の放出方法についての調査,加速電場の種類についての調査及びEGUNと呼ばれる電子軌道解析計算コードによる計算結果である。最後に我々の開発している大強度CW加速器に適した電子銃についてのまとめを行っている。

報告書

大強度CW加速器研究会報告書(1)

姫野 嘉昭; 遠山 伸一; 佐久間 実

PNC-TN9410 93-011, 192 Pages, 1992/03

PNC-TN9410-93-011.pdf:7.8MB

核変換技術に必要とされる大強度CW電子線形加速器の要素開発を効率的に進めるために、平成3年1月から活動を開始した「大強度CW加速器研究会」における、種々の報告と議論等の概要を取りまとめたものである。事業団において開発中の大強度CW電子線加速器に関する技術は、種々の加速器を利用した核変換技術に共通の基盤となるものであり、加速器の大強度化に向けたひとつのマイルストーンとして、着実に進める必要のあることが確認された。また、開発すべき加速管の形式としては、進行波還流型を選定することが望ましいとされた。

37 件中 1件目~20件目を表示