Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 111

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Role of silicon on solute clustering and embrittlement in highly neutron-irradiated pressurized water reactor surveillance test specimens

Takamizawa, Hisashi; Hata, Kuniki; Nishiyama, Yutaka; Toyama, Takeshi*; Nagai, Yasuyoshi*

Journal of Nuclear Materials, 556, p.153203_1 - 153203_10, 2021/12

Solute clusters (SCs) formed in pressurized water reactor surveillance test specimens neutron-irradiated to a fluence of 1 $$times$$ 10$$^{20}$$ n/cm$$^{2}$$ were analyzed via atom probe tomography to understand the effect of silicon on solute clustering and irradiation embrittlement of reactor pressure vessel steels. In high-Cu bearing materials, Cu atoms were aggregated at the center of cluster surrounded by the Ni, Mn, and Si atoms like a core-shell structure. In low-Cu bearing materials, Ni, Mn, and Si atoms formed cluster and these solutes were not comprised core-shell structure in SCs. While the number of Cu atoms in clusters was decreased with decreasing nominal Cu content, the number of Si atoms had clearly increased. The cluster radius ($$r$$) and number density ($$N_{d}$$) decreased and increased, respectively, with increasing nominal Si content. The shift in the reference temperature for nil-ductility transition ($$Delta$$RT$$_{NDT}$$) showed a good correlation with the square root of volume fraction ($$V_{f}$$) multiplied by r ($$sqrt{V_{f}times {r}}$$). This suggested that the dislocation cutting through the particles mechanism dominates the precipitation hardening responsible for irradiation embrittlement. The negative relation between the nominal Si content and $$Delta$$RT$$_{NDT}$$ indicated that increasing of nominal Si content reduces the degree of embrittlement.

Journal Articles

Radiation-enhanced diffusion of copper in iron studied by three-dimensional atom probe

Toyama, Takeshi*; Suzudo, Tomoaki; Nagai, Yasuyoshi*; 9 of others*

Journal of Nuclear Materials, 556, p.153176_1 - 153176_7, 2021/12

We performed a high-precision investigation of radiation-enhanced diffusion (RED) using electron irradiation and three-dimensional atom probe (3D-AP). Cu-Fe diffusion pairs were created using high-purity Fe and Cu as base materials, and irradiated by 2 MeV electron. Cu diffusion into the Fe matrix was observed at the atomic level using 3D-AP, and the diffusion coefficient was obtained directly using Fick's law. RED was clearly observed, and the ratio of diffusion under irradiation to thermal diffusion was enhanced at low temperature. RED was quantitatively evaluated using the reaction kinetics model, and the model which consider only vacancies gave a good agreement. This gave experimental clarification that RED was dominated by irradiation-induced vacancies. In addition, the direct experimental results on the effect of irradiation on the solubility limits of Cu in Fe was obtained; solubility limits under irradiation were found to be lower than those under thermal aging.

Journal Articles

Investigation of Cu diffusivity in Fe by a combination of atom probe experiments and kinetic Monte Carlo simulation

Zhao, C.*; Suzudo, Tomoaki; Toyama, Takeshi*; Nishitani, Shigeto*; Inoue, Koji*; Nagai, Yasuyoshi*

Materials Transactions, 62(7), p.929 - 934, 2021/07

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

We succeeded in measuring the diffusion coefficient of Cu in Fe in a low temperature range that had not been measured so far. Since the diffusion couple, which is a general method for measuring the diffusion coefficient, can be applied only at high temperature, atom probe tomography and Cu precipitation rate theory were used in this study. The estimated diffusion coefficient was found to be more reliable than that obtained in previous studies. Therefore, it is considered that the estimation by the atom probe provided higher accuracy. Furthermore, the kinetic Monte Carlo simulation revealed that the diffusion coefficient estimated by this method tends to be slightly overestimated as the temperature decreases.

Journal Articles

Reliability of J-PARC accelerator system over the past decade

Yamamoto, Kazami; Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*

JPS Conference Proceedings (Internet), 33, p.011016_1 - 011016_7, 2021/03

The Japan Proton Accelerator Research Complex (J-PARC) is a multipurpose facility for scientific experiments. The accelerator complex consists of a 400-MeV Linac, a 3-GeV Rapid-Cycling Synchrotron (RCS) and a 30-GeV Main Ring synchrotron (MR). The RCS delivers a proton beam to the neutron target and MR, and the MR delivers the beams to the neutrino target and the Hadron Experimental Facility. The first operation of the neutron experiments began in December 2008. Following this, the user operation has been continued with some accidental suspensions. These suspensions include the recovery work due to the Great East Japan Earthquake in March 2011 and the radiation leak incident at the Hadron Experimental Facility. In this report, we summarize the major causes of suspension, and the statistics of the reliability of J-PARC accelerator system is analyzed. Owing to our efforts to achieve higher reliability, the Mean Time Between Failure (MTBF) has been improved.

Journal Articles

Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys

Suzudo, Tomoaki; Takamizawa, Hisashi; Nishiyama, Yutaka; Caro, A.*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Journal of Nuclear Materials, 540, p.152306_1 - 152306_10, 2020/11

 Times Cited Count:1 Percentile:39.17(Materials Science, Multidisciplinary)

Spinodal decomposition in thermally aged Fe-Cr alloys leads to significant hardening, which is the direct cause of the so-called 475C-embrittlement. To illustrate how spinodal decomposition induces hardening by atomistic interactions, we conducted a series of numerical simulations as well as reference experiments. The numerical results indicated that the hardness scales linearly with the short-range order (SRO) parameter, while the experimental result reproduced this relationship within statistical error. Both seemingly suggest that neighboring Cr-Cr atomic pairs essentially cause hardening, because SRO is by definition uniquely dependent on the appearance probability of such pairs. A further numerical investigation supported this notion, as it suggests that the dominant cause of hardening is the pinning effect of dislocations passing over such Cr-Cr pairs.

Journal Articles

Titanium nitride-coated ceramic break for wall current monitors with an improved broadband frequency response

Shobuda, Yoshihiro; Toyama, Takeshi*

Physical Review Accelerators and Beams (Internet), 23(9), p.092801_1 - 092801_18, 2020/09

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

The beam impedance of a ceramic break with titanium nitride (TiN) coating consists of three electric components in parallel: resistive wall term caused by TiN, radiation term, and capacitive term made by the ceramic itself. The entire wall current continues to run in the thin TiN even when the skin depth is much larger than the chamber thickness, except for the extremely thin TiN satisfying the condition that the radiation loss from the ceramic break becomes lower than the energy loss due to the DC-current on the thin TiN. This characteristic is useful in developing a wall current monitor with an improved frequency response. This study demonstrates the feature of the "ceramic break" monitor up to a few GHz from the theoretical and measurement points of view.

Journal Articles

Study of the transverse beam instability caused by the resistive-wall impedance at the J-PARC main ring

Kobayashi, Aine*; Toyama, Takeshi*; Shobuda, Yoshihiro; Nakamura, Tsuyoshi*; Sato, Yoichi*

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.684 - 688, 2020/09

no abstracts in English

Journal Articles

Analysis of collective instabilities of uneven filled beams including long range wake fields using an IIR filter

Toyama, Takeshi*; Kobayashi, Aine*; Nakamura, Tsuyoshi*; Shobuda, Yoshihiro

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.689 - 692, 2020/09

no abstracts in English

Journal Articles

${it In situ}$ WB-STEM observation of dislocation loop behavior in reactor pressure vessel steel during post-irradiation annealing

Du, Y.*; Yoshida, Kenta*; Shimada, Yusuke*; Toyama, Takeshi*; Inoue, Koji*; Arakawa, Kazuto*; Suzudo, Tomoaki; Milan, K. J.*; Gerard, R.*; Onuki, Somei*; et al.

Materialia, 12, p.100778_1 - 100778_10, 2020/08

In order to ensure the integrity of the reactor pressure vessel in the long term, it is necessary to understand the effects of irradiation on the materials. In this study, irradiation-induced dislocation loops were observed in neutron-irradiated reactor pressure vessel specimens during annealing using our newly developed WB-STEM. It was confirmed that the proportion of $$<100>$$ loops increased with increasing annealing temperature. We also succeeded in observing the phenomenon that two $$frac{1}{2}$$$$<111>$$ loops collide into a $$<100>$$ loop. Moreover, a phenomenon in which dislocation loops decorate dislocations was also observed, and the mechanism was successfully explained by molecular dynamics simulation.

Journal Articles

Stable structure of hydrogen atoms trapped in tungsten divacancy

Osawa, Kazuhito*; Toyama, Takeshi*; Hatano, Yuji*; Yamaguchi, Masatake; Watanabe, Hideo*

Journal of Nuclear Materials, 527, p.151825_1 - 151825_7, 2019/12

 Times Cited Count:2 Percentile:42.44(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*; Yamamoto, Noboru*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1235 - 1239, 2019/07

After the summer shutdown in 2018, the J-PARC restarted user operation in late October. While beam power to the Materials and Life Science Experimental Facility (MLF) was 500 kW as before the summer shutdown, linac beam current was increased from 40 to 50 mA. Operation of the Main Ring (MR) was suspended due to the modification and/or maintenance of the Superkamiokande (neutrino detector) and Hadron experimental facility. The user operation was resumed in the middle of February for the Hadron experimental facility at 51 kW. But on March 18, one of the bending magnets in the beam transport line to the MR had a failure. It was temporary recovered and restored beam operation on April 5, but the failure occurred again on April 24 and the beam operation of the MR was suspended. In the fiscal year of 2018, the availabilities for the MLF, neutrino and hadron facilities are 94%, 86%, and 74%, respectively.

Journal Articles

Mapping measurement for beam energy position monitor system for RIKEN superconducting acceleration cavity

Watanabe, Tamaki*; Toyama, Takeshi*; Hanamura, Kotoku*; Imao, Hiroshi*; Kamigaito, Osamu*; Kamoshida, Atsushi*; Kawachi, Toshihiko*; Koyama, Ryo*; Sakamoto, Naruhiko*; Fukunishi, Nobuhisa*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1105 - 1108, 2019/07

Upgrades for the RIKEN heavy-ion linac (RILAC) involving a new superconducting linac (SRILAC) are currently underway at the RIKEN radioactive isotope beam factory (RIBF). It is crucially important to develop nondestructive beam measurement diagnostics. We have developed a beam energy position monitor (BEPM) system which can measure not only the beam position but also the beam energy simultaneously by measuring the time of flight of the beam. We fabricated 11 BEPMs and completed the position calibration to obtain the sensitivity and offset for each BEPMs. The position accuracy has been achieved to be less than $$pm$$ 0.1 mm by using the mapping measurement.

Journal Articles

Development of beam energy position monitor system for RIKEN superconducting acceleration cavity

Watanabe, Tamaki*; Imao, Hiroshi*; Kamigaito, Osamu*; Sakamoto, Naruhiko*; Fukunishi, Nobuhisa*; Fujimaki, Masaki*; Yamada, Kazunari*; Watanabe, Yutaka*; Koyama, Ryo*; Toyama, Takeshi*; et al.

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.49 - 54, 2018/08

no abstracts in English

Journal Articles

Reducing the beam impedance of the kicker at the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

Shobuda, Yoshihiro; Chin, Y. H.*; Hayashi, Naoki; Irie, Yoshiro*; Takayanagi, Tomohiro; Togashi, Tomohito; Toyama, Takeshi*; Yamamoto, Kazami; Yamamoto, Masanobu

Physical Review Accelerators and Beams (Internet), 21(6), p.061003_1 - 161003_15, 2018/06

 Times Cited Count:2 Percentile:29.6(Physics, Nuclear)

no abstracts in English

Journal Articles

Development of beam energy and position monitor system at RIBF

Watanabe, Tamaki*; Fukunishi, Nobuhisa*; Fujimaki, Masaki*; Koyama, Ryo*; Toyama, Takeshi*; Miyao, Tomoaki*; Miura, Akihiko

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1112 - 1117, 2017/12

no abstracts in English

JAEA Reports

Clearance of concrete generated from modification activities of JRR-3; Results for measuring and evaluating radioactivity concentration

Ogoshi, Yurie; Satoyama, Tomonori; Kishimoto, Katsumi; Nanri, Tomohiro; Suzuki, Takeshi; Tomioka, Osamu; Takaizumi, Hirohide*; Kanno, Tomoyuki*; Maruyama, Tatsuya*

JAEA-Technology 2017-017, 152 Pages, 2017/08


At Nuclear Science Research Institute, clearance works for about 4,000 tons of extremely low-level radioactive concrete debris, which were generated from the modification activities of JRR-3 from FY 1985 to FY 1989 and stored in the waste storage facility NL, carried out. First of this clearance works, method for measuring and evaluating radioactivity concentration was approved by Minister of MEXT on July 25, 2008. And then, clearance works were started from FY 2009. Measuring and evaluating radioactivity concentration was achieved by using the approved method, and was confirmed by government. And then, clearance works were completed in FY 2014. The clearance concrete was recycled as a material for restoration works of the 2011 off the Pacific coast of Tohoku Earthquake. This report summarizes the results of measuring and evaluating radioactivity concentration, achievement of confirmation by government, recycling of cleared concrete and cost for clearance works.

Journal Articles

Coupled bunch instability and its cure at J-PARC RCS

Shobuda, Yoshihiro; Saha, P. K.; Hotchi, Hideaki; Harada, Hiroyuki; Takayanagi, Tomohiro; Tamura, Fumihiko; Tani, Norio; Togashi, Tomohito; Toyama, Takeshi*; Watanabe, Yasuhiro; et al.

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2946 - 2949, 2017/05

no abstracts in English

Journal Articles

Theoretical elucidation of space charge effects on the coupled-bunch instability at the 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

Shobuda, Yoshihiro; Chin, Y. H.*; Saha, P. K.; Hotchi, Hideaki; Harada, Hiroyuki; Irie, Yoshiro*; Tamura, Fumihiko; Tani, Norio; Toyama, Takeshi*; Watanabe, Yasuhiro; et al.

Progress of Theoretical and Experimental Physics (Internet), 2017(1), p.013G01_1 - 013G01_39, 2017/01


 Times Cited Count:10 Percentile:69(Physics, Multidisciplinary)

The Rapid Cycling Synchrotron (RCS), whose beam energy ranges from 400 MeV to 3 GeV and which is located in the Japan Proton Accelerator Research Complex, is a kicker-impedance dominant machine, which violates the impedance budget from a classical viewpoint. Contrary to conventional understanding, we have succeeded to accelerate a 1-MW equivalent beam. The machine has some interesting features: for instance, the beam tends to be unstable for the smaller transverse beam size, the beam is stabilized by increasing the peak current ${it etc}$. Space charge effects play an important role in the beam instability at the RCS. In this study, a new theory has been developed to calculate the beam growth rate with the head-tail and coupled-bunch modes ($$m,mu$$) while taking space charge effects into account. The theory sufficiently explains the distinctive features of the beam instabilities at the RCS.

Journal Articles

Predoping effects of boron and phosphorous on arsenic diffusion along grain boundaries in polycrystalline silicon investigated by atom probe tomography

Takamizawa, Hisashi; Shimizu, Yasuo*; Inoue, Koji*; Nozawa, Yasuko*; Toyama, Takeshi*; Yano, Fumiko*; Inoue, Masao*; Nishida, Akio*; Nagai, Yasuyoshi*

Applied Physics Express, 9(10), p.106601_1 - 106601_4, 2016/10

 Times Cited Count:0 Percentile:0(Physics, Applied)

Journal Articles

The Two-step nucleation of G-phase in ferrite

Matsukawa, Yoshitaka*; Takeuchi, Tomoaki; Kakubo, Yuta*; Suzudo, Tomoaki; Watanabe, Hideo*; Abe, Hiroaki*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Acta Materialia, 116, p.104 - 113, 2016/09

 Times Cited Count:51 Percentile:95.96(Materials Science, Multidisciplinary)

Atom probe tomography (APT) and TEM were combined for identifying the stage at which solute clusters transform into compounds crystallographically distinct from the matrix, in the precipitation of the G-phase (Ni$$_{16}$$Si$$_{7}$$Mn$$_{6}$$) from ferrite solid solution subjected to isothermal annealing at 673 K. Based on a systematic analysis of solute clusters as a function of annealing time, the nucleation of the G-phase was found to occur via a two-step process. Moreover, the structural change was found to occur via another two-step process. There was a time lag between the end of cluster growth to become a critical size and the start of the structural change. During the incubation period solute enrichment occurred inside the clusters without further size growth, indicating that the nucleation of the G-phase occurs at the critical size with a critical composition. Judging from the results of APT, TEM and the simulation of electron diffraction patterns, the critical composition was estimated to be Ni$$_{16}$$Si$$_{3.5}$$(Fe,Cr)$$_{3.5}$$Mn$$_{6}$$.

111 (Records 1-20 displayed on this page)