Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yoshida, Go*; Matsumura, Hiroshi*; Nakamura, Hajime*; Miura, Taichi*; Toyoda, Akihiro*; Masumoto, Kazuyoshi*; Nakabayashi, Takayuki*; Matsuda, Makoto
Journal of Nuclear Science and Technology, 61(10), p.1298 - 1307, 2024/10
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Toyoda, Satoshi*; Yamamoto, Tomoki*; Yoshimura, Masashi*; Sumida, Hirosuke*; Mineoi, Susumu*; Machida, Masatake*; Yoshigoe, Akitaka; Suzuki, Satoru*; Yokoyama, Kazushi*; Ohashi, Yuji*; et al.
Vacuum and Surface Science, 64(2), p.86 - 91, 2021/02
We have developed measurement and analysis techniques in X-ray photoelectron spectroscopy. To begin with, time-division depth profiles of gate stacked film interfaces have been achieved by NAP-HARPES (Near Ambient Pressure Hard X-ray Angle-Resolved Photo Emission Spectroscopy) data. We then have promoted our methods to quickly perform peak fittings and depth profiling from time-division ARPES data, which enables us to realize 4D-XPS analysis. It is found that the traditional maximum entropy method (MEM) combined with Jackknife averaging of sparse modeling in NAP-HARPES data is effective to perform dynamic measurement of depth profiles with high precision.
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:15 Percentile:98.44(Quantum Science & Technology)Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:4 Percentile:84.40(Physics, Atomic, Molecular & Chemical)Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:89.72(Physics, Atomic, Molecular & Chemical)Matsuda, Norihiro; Kasugai, Yoshimi; Matsumura, Hiroshi*; Iwase, Hiroshi*; Toyoda, Akihiro*; Yashima, Hiroshi*; Sekimoto, Shun*; Oishi, Koji*; Sakamoto, Yukio*; Nakashima, Hiroshi; et al.
Progress in Nuclear Science and Technology (Internet), 4, p.337 - 340, 2014/04
The Neutrinos at the Main Injector (NuMI) at Fermilab produces intense neutrino beam to investigate the phenomena of the neutrino mixing and oscillation. The Hadron Absorber, consists of thick blocks of aluminum, iron and concrete, is placed at the end of decay volume as a dump for primary proton and secondary particles generated in NuMI. In order to estimate the shielding effect, the reaction rate measurements with activation detector were carried out on the back surface of the absorber. The induced activities in the detectors were measured by analyzing their -ray spectra using HPGe detectors. Two kind of peak was showed on two-dimensional distributions of obtained reaction rates at right angle to the beam direction. One was strong peaks at the both horizontal side. And, another smaller was at the top. It was concluded that these peaks were the results of particles streaming through the gaps in the Hadron Absorber shielding.
Matsumura, Hiroshi*; Kinoshita, Norikazu*; Iwase, Hiroshi*; Toyoda, Akihiro*; Kasugai, Yoshimi; Matsuda, Norihiro; Sakamoto, Yukio; Nakashima, Hiroshi; Yashima, Hiroshi*; Mokhov, N.*; et al.
Journal of the Korean Physical Society, 59(2), p.2059 - 2062, 2011/08
Times Cited Count:1 Percentile:11.01(Physics, Multidisciplinary)In an antiproton production (Pbar) target station of the Fermi National Accelerator Laboratory (FNAL), the secondary particles produced by bombarding a target with 120-GeV protons are shielded by a thick iron shield. In order to obtain experimental data on high-energy proton accelerator facilities, we indirectly measured 100-MeV neutrons at the outside of the iron shield. The measurement was performed by using the Au activation method coupled with a low-background
-ray counting system. As an indicator for the neutron flux, we determined the production rates of 8 spallation nuclides (
Au,
Pt,
Ir,
Os,
Hf,
Lu,
Lu, and
Yb) in the Au activation detector. The measured production rates were compared with the theoretical production rates calculated using PHITS. We proved that the Au activation method can serve as a powerful tool for indirect measurements of
100-MeV neutrons that play a vital role in neutron transport.
Matsumura, Hiroshi*; Kasugai, Yoshimi; Yashima, Hiroshi*; Iwase, Hiroshi*; Matsuda, Norihiro; Kinoshita, Norikazu*; Sanami, Toshiya*; Hagiwara, Masayuki*; Shigyo, Nobuhiro*; Arakawa, Hiroyuki*; et al.
no journal, ,
A gold activation detector was studied as a high energy neutron detector at high radiation field in a series of shielding experiment at Fermi National Accelerator Laboratory. We could measure spallation residual nuclei with wide threshold energy by using a combination method with radiological chemical separation and X-X- coincidence detection methods. It was shown the detector was effective for high energy neutron detector.
Matsuda, Norihiro; Kasugai, Yoshimi; Sakamoto, Yukio; Nakashima, Hiroshi; Matsumura, Hiroshi*; Iwase, Hiroshi*; Toyoda, Akihiro*; Yashima, Hiroshi*; Sekimoto, Shun*; Oishi, Koji*; et al.
no journal, ,
no abstracts in English