Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Tuning strain-induced $$gamma$$-to-$$varepsilon$$ martensitic transformation of biomedical Co-Cr-Mo alloys by introducing parent phase lattice defects

Mori, Manami*; Yamanaka, Kenta*; Sato, Shigeo*; Tsubaki, Shinki*; Sato, Kozue*; Kumagai, Masayoshi*; Imafuku, Muneyuki*; Shobu, Takahisa; Chiba, Akihiko*

Journal of the Mechanical Behavior of Biomedical Materials, 90, p.523 - 529, 2019/02

 Times Cited Count:19 Percentile:71.16(Engineering, Biomedical)

Journal Articles

Investigation of elastic deformation mechanism in as-cast and annealed eutectic and hypoeutectic Zr-Cu-Al metallic glasses by multiscale strain analysis

Suzuki, Hiroshi; Yamada, Rui*; Tsubaki, Shinki*; Imafuku, Muneyuki*; Sato, Shigeo*; Watanuki, Tetsu; Machida, Akihiko; Saida, Junji*

Metals, 6(1), p.12_1 - 12_11, 2016/01

 Times Cited Count:3 Percentile:17.57(Materials Science, Multidisciplinary)

Elastic deformation behaviors of as-cast and annealed eutectic and hypoeutectic Zr-Cu-Al bulk metallic glasses (BMGs) were investigated on a basis of different strain-scales determined by X-ray scattering and the strain gauge. The microscopic strains determined by Direct-space method (DSM) and Q-space method (QSM) were compared with the macroscopic strain measured by the strain gauge, and the difference in the deformation mechanism between eutectic and hypoeutectic Zr-Cu-Al BMGs was investigated by their correlation. The eutectic Zr$$_{50}$$Cu$$_{40}$$Al$$_{10}$$ BMG obtains more homogeneous microstructure by free-volume annihilation after annealing, improving a resistance to deformation but degrading ductility because of a decrease in the volume fraction of WBRs (Weakly-Bonded Regions) with relatively high mobility. On the other hand, the as-cast hypoeutectic Zr$$_{60}$$Cu$$_{30}$$Al$$_{10}$$ BMG originally has homogeneous microstructure, but loses its structural and elastic homogeneities because of nanocluster formation after annealing. Such structural changes after annealing might develop unique mechanical properties showing no degradations of ductility and toughness for the structural-relaxed hypoeutectic BMGs.

2 (Records 1-2 displayed on this page)
  • 1