Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okada, Kazuho*; Shibata, Akinobu*; Kimura, Yuji*; Yamaguchi, Masatake; Ebihara, Kenichi; Tsuji, Nobuhiro*
Acta Materialia, 280, p.120288_1 - 120288_14, 2024/11
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Mao, W.*; Gao, S.*; Gong, W.; Kawasaki, Takuro; Ito, Tatsuya; Harjo, S.; Tsuji, Nobuhiro*
Acta Materialia, 278, p.120233_1 - 120233_13, 2024/10
Times Cited Count:1 Percentile:65.10(Materials Science, Multidisciplinary)Mao, W.; Gong, W.; Harjo, S.; Morooka, Satoshi; Gao, S.*; Kawasaki, Takuro; Tsuji, Nobuhiro*
Journal of Materials Science & Technology, 176, p.69 - 82, 2024/03
Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)The yield stress of Fe-24Ni-0.3C (wt.%) metastable austenitic steel increased 3.5 times (158 551 MPa) when the average grain size decreased from 35 m (coarse-grained [CG]) to 0.5 m (ultrafine-grained [UFG]), whereas the tensile elongation was kept large (0.87 0.82). neutron diffraction measurements of the CG and UFG Fe-24Ni-0.3C steels were performed during tensile deformation at room temperature to quantitatively elucidate the influence of grain size on the mechanical properties and deformation mechanisms. The initial stages of plastic deformation in the CG and UFG samples were dominated by dislocation slip, with deformation-induced martensitic transformation (DIMT) also occurring in the later stage of deformation. Results show that grain refinement increases the initiation stress of DIMT largely and suppresses the rate of DIMT concerning the strain, which is attributed to the following effects. (i) Grain refinement increased the stabilization of austenite and considerably delayed the initiation of DIMT in the 111//LD (LD: loading direction) austenite grains, which were the most stable grains for DIMT. As a result, most of the 111//LD austenite grains in the UFG specimens failed to transform into martensite. (ii) Grain refinement also suppressed the autocatalytic effect of the martensitic transformation. Nevertheless, the DIMT with the low transformation rate in the UFG specimen was more efficient in increasing the flow stress and more appropriate to maintain uniform deformation than that in the CG specimen during deformation. The above phenomena mutually contributed to the excellent combination of strength and ductility of the UFG metastable austenitic steel.
Mao, W.; Gao, S.*; Gong, W.; Harjo, S.; Kawasaki, Takuro; Tsuji, Nobuhiro*
Scripta Materialia, 235, p.115642_1 - 115642_6, 2023/10
Times Cited Count:8 Percentile:83.19(Nanoscience & Nanotechnology)In the present study, a hybrid neutron diffraction and digital image correlation measurement was performed on tensile deformation of an ultrafine grain (UFG) stainless steel exhibiting a huge Lders band deformation to evaluate the individual contribution of the austenite matrix and the deformation-induced martensite to the strain hardening during the propagation of the band. Quantitative analysis revealed that the strain hardening of the austenite matrix was insufficient to maintain a uniform deformation when the flow stress was greatly enhanced by the UFG structure. The strain hardening required for the Lders band to propagate was mostly provided by the formation of martensite and the high internal stress within it.
Mao, W.; Gao, S.*; Gong, W.; Bai, Y.*; Harjo, S.; Park, M.-H.*; Shibata, Akinobu*; Tsuji, Nobuhiro*
Acta Materialia, 256, p.119139_1 - 119139_16, 2023/09
Times Cited Count:20 Percentile:96.70(Materials Science, Multidisciplinary)Transformation-induced plasticity (TRIP)-assisted steels exhibit an excellent combination of strength and ductility due to enhanced strain hardening rate associated with deformation-induced martensitic transformation (DIMT). Quantitative evaluation on the role of DIMT in strain hardening behavior of TRIP-assisted steels and alloys can provide guidance for designing advanced materials with strength and ductility synergy, which is, however, difficult since the phase composition keeps changing and both stress and plastic strain are dynamically partitioned among constituent phases during deformation. In the present study, tensile deformation with neutron diffraction measurement was performed on an Fe-24Ni-0.3C (wt.%) TRIP-assisted austenitic steel. The analysis method based on stress partitioning and phase fractions measured by neutron diffraction was proposed, by which the tensile flow stress and the strain hardening rate of the specimen were resolved into factors associated with each phase, i.e., the austenite matrix, deformation-induced martensite, and the transformation rate of DIMT after differentiation, and then the role of each factor in the global strain hardening behavior was discussed. In addition, the plastic strain partitioning between austenite and martensite was indirectly estimated using the dislocation density measured by diffraction profile analysis, which constructed the full picture of stress and strain partitioning between austenite and martensite in the material. The results suggested that both the transformation rate and the phase stress borne by the deformation-induced martensite played important roles in the global tensile properties of the material. The proposed decomposition analysis method could be widely applied to investigating mechanical behavior of multi-phase alloys exhibiting the TRIP phenomenon.
Chong, Y.*; Gholizadeh, R.*; Guo, B.*; Tsuru, Tomohito; Zhao, G.*; Yoshida, Shuhei*; Mitsuhara, Masatoshi*; Godfrey, A.*; Tsuji, Nobuhiro*
Acta Materialia, 257, p.119165_1 - 119165_14, 2023/09
Times Cited Count:20 Percentile:97.34(Materials Science, Multidisciplinary)Metastable titanium alloys possess excellent strain-hardening capability, but suffer from a low yield strength. As a result, numerous attempts have been made to strengthen this important structural material in the last decade. Here, we explore the contributions of grain refinement and interstitial additions in raising the yield strength of a Ti-12Mo (wt.%) metastable titanium alloy. Surprisingly, rather than strengthening the material, grain refinement actually lowers the ultimate tensile strength in this alloy. This unexpected and anomalous behavior is attributed to a significant enhancement in strain-induced martensite phase transformation, where in-situ synchrotron X-ray diffraction analysis reveals, for the first time, that this phase is much softer than the parent phase. Instead, a combination of both oxygen addition and grain refinement is found to realize an unprecedented strength-ductility synergy in a Ti-12Mo-0.3O (wt.%) alloy. The advantageous effect of oxygen solutes in this ternary alloy is twofold. Firstly, solute oxygen largely suppresses strain-induced transformation to the martensite phase, even in a fine-grained microstructure, thus avoiding the softening effect of excessive amounts of martensite. Secondly, oxygen solutes readily segregate to twin boundaries, as revealed by atom probe tomography. This restricts the growth of deformation twins, thereby promoting more extensive twin nucleation, leading to enhanced microstructural refinement. The insights from our work provide a cost-effective rationale for the design of strong yet tough metastable titanium alloys, with significant implications for more widespread use of this high strength-to-weight structural material.
Gong, W.; Harjo, S.; Tomota, Yo*; Morooka, Satoshi; Kawasaki, Takuro; Shibata, Akinobu*; Tsuji, Nobuhiro*
Acta Materialia, 250, p.118860_1 - 118860_16, 2023/05
Times Cited Count:14 Percentile:93.15(Materials Science, Multidisciplinary)Gong, W.; Kawasaki, Takuro; Zheng, R.*; Mayama, Tsuyoshi*; Sun, B.*; Aizawa, Kazuya; Harjo, S.; Tsuji, Nobuhiro*
Scripta Materialia, 225, p.115161_1 - 115161_5, 2023/03
Times Cited Count:7 Percentile:57.57(Nanoscience & Nanotechnology)Chong, Y.*; Gholizadeh, R.*; Tsuru, Tomohito; Zhang, R.*; Inoue, Koji*; Gao, W.*; Godfrey, A.*; Mitsuhara, Masatoshi*; Morris, J. W. Jr.*; Minor, A. M.*; et al.
Nature Communications (Internet), 14, p.404_1 - 404_11, 2023/02
Times Cited Count:22 Percentile:94.77(Multidisciplinary Sciences)Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size 2.0 m) in Ti-0.3wt.%O was successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O was achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced dislocation activities that contribute to the excellent strain hardening ability. The present strategy could not only boost the potential applications of high strength Ti-O alloys at low temperatures, but could also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.
Guo, B.*; Mao, W.; Chong, Y.*; Shibata, Akinobu*; Harjo, S.; Gong, W.; Chen, H.*; Jonas, J. J.*; Tsuji, Nobuhiro*
Acta Materialia, 242, p.118427_1 - 118427_11, 2023/01
Times Cited Count:11 Percentile:74.03(Materials Science, Multidisciplinary)Gong, W.; Zheng, R.*; Harjo, S.; Kawasaki, Takuro; Aizawa, Kazuya; Tsuji, Nobuhiro*
Journal of Magnesium and Alloys (Internet), 10(12), p.3418 - 3432, 2022/12
Times Cited Count:25 Percentile:93.22(Metallurgy & Metallurgical Engineering)Chong, Y.*; Tsuru, Tomohito; Guo, B.*; Gholizadeh, R.*; Inoue, Koji*; Tsuji, Nobuhiro*
Acta Materialia, 240, p.118356_1 - 118356_15, 2022/11
Times Cited Count:26 Percentile:93.22(Materials Science, Multidisciplinary)In this study, we systematically investigated the influences of nitrogen content and grain size on the tensile properties and deformation behaviors of titanium at room temperature. By high-pressure torsion and annealing, we obtained ultrafine-grained (UFG) Ti-0.3wt.%N alloy with a fully recrystallized microstructure, which combined an unprecedented synergy of ultrahigh yield strength (1.04 GPa) and large uniform elongation (10%). The hardening and strain-hardening mechanisms of Ti-0.3wt.%N alloy were comprehensively studied via deformation substructure observation and first-principles calculations. It is revealed that the contributions of nitrogen to the excellent strength/ductility balance in UFG Ti-0.3wt.%N were twofold. On one hand, nitrogen atoms inside the grains strongly impeded the motion of dislocations on prismatic plane due the shuffling of nitrogen from octahedral to hexahedral site, giving rise to a six-fold increase in the friction stress than pure Ti. Moreover, the greatly reduced stacking fault energy difference between prismatic and pyramidal planes in Ti-0.3wt.%N alloy facilitated an easier activation of dislocations, which contributed to an enhanced strain-hardening rate. On the other hand, some nitrogen atoms segregated near the grain boundaries, a phenomenon discovered in -titanium for the first time. These segregated nitrogen atoms served as an additional contributor to the yield strength of UFG Ti-0.3wt.%N, by raising the barrier against dislocation slip transfer between grains. Our experimental and theoretical calculation work provide insights for the design of affordable high strength titanium without a large sacrifice of ductility, shedding lights on a more widespread use of this high strength to weight material.
Zheng, R.*; Gong, W.; Du, J.-P.*; Gao, S.*; Liu, M.*; Li, G.*; Kawasaki, Takuro; Harjo, S.; Ma, C.*; Ogata, Shigenobu*; et al.
Acta Materialia, 238, p.118243_1 - 118243_15, 2022/10
Times Cited Count:33 Percentile:96.53(Materials Science, Multidisciplinary)Yoshida, Shuhei*; Fu, R.*; Gong, W.; Ikeuchi, Takuto*; Bai, Y.*; Feng, Z.*; Wu, G.*; Shibata, Akinobu*; Hansen, N.*; Huang, X.*; et al.
IOP Conference Series; Materials Science and Engineering, 1249, p.012027_1 - 012027_6, 2022/08
Times Cited Count:2 Percentile:83.77(Metallurgy & Metallurgical Engineering)Liu, M.*; Gong, W.; Zheng, R.*; Li, J.*; Zhang, Z.*; Gao, S.*; Ma, C.*; Tsuji, Nobuhiro*
Acta Materialia, 226, p.117629_1 - 117629_13, 2022/03
Times Cited Count:64 Percentile:99.41(Materials Science, Multidisciplinary)Mao, W.; Gao, S.*; Bai, Y.*; Park, M.-H.*; Shibata, Akinobu*; Tsuji, Nobuhiro*
Journal of Materials Research and Technology, 17, p.2690 - 2700, 2022/03
Times Cited Count:16 Percentile:85.09(Materials Science, Multidisciplinary)Metastable austenitic steels having ultrafine grained (UFG) microstructures can be fabricated by conventional cold rolling and annealing processes by utilizing the deformation-induced martensitic transformation during cold rolling and its reverse transformation to austenite upon annealing. However, such processes are not applicable when the austenite has high mechanical stability against deformation-induced martensitic transformation, since there is no sufficient amount of martensite formed during cold rolling. In the present study, a two-step cold rolling and annealing process was applied to an Fe-24Ni-0.3C metastable austenitic steel having high mechanical stability. Prior to the cold rolling, a repetitive subzero treatment and reverse annealing treatment were applied. Such a treatment dramatically decreased the mechanical stability of the austenite and greatly accelerated the formation of deformation-induced martensite during the following cold rolling processes. As a result, the grain refinement was significantly promoted, and a fully recrystallized specimen with a mean austenite grain size of 0.5 mm was successfully fabricated, which exhibited both high strength and high ductility.
Okada, Kazuho*; Shibata, Akinobu*; Gong, W.; Tsuji, Nobuhiro*
Acta Materialia, 225, p.117549_1 - 117549_13, 2022/02
Times Cited Count:24 Percentile:93.22(Materials Science, Multidisciplinary)Lavakumar, A.*; Park, M. H.*; Gao, S.*; Shibata, Akinobu*; Okitsu, Yoshitaka*; Gong, W.; Harjo, S.; Tsuji, Nobuhiro*
IOP Conference Series; Materials Science and Engineering, 580, p.012036_1 - 012036_6, 2019/09
Times Cited Count:3 Percentile:80.88(Engineering, Mechanical)Shibata, Akinobu*; Takeda, Yasunari*; Park, N.*; Zhao, L.*; Harjo, S.; Kawasaki, Takuro; Gong, W.*; Tsuji, Nobuhiro*
Scripta Materialia, 165, p.44 - 49, 2019/05
Times Cited Count:34 Percentile:85.33(Nanoscience & Nanotechnology)Nakamura, Yoshihiko*; Shibata, Akinobu*; Gong, W.*; Harjo, S.; Kawasaki, Takuro; Ito, Atsushi*; Tsuji, Nobuhiro*
Proceedings of International Conference on Martensitic Transformations: Chicago, p.155 - 158, 2018/04