Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2022

Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Ishihara, Takanori; Ogawa, Hiroki; Hakoiwa, Hiroaki; Watanabe, Tsuyoshi; Nishiyama, Nariaki; Yokoyama, Tatsunori; Ogata, Manabu; et al.

JAEA-Research 2023-005, 78 Pages, 2023/10

JAEA-Research-2023-005.pdf:6.51MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year of the Japan Atomic Energy Agency 4th Medium- and Long-term Plan (fiscal years 2022-2028) to provide the scientific base for assessing geosphere stability for long-term isolation of high-level radioactive waste. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

A GIS-based approach for geomorphological analysis of volcanic edifices to estimate latent magma plumbing system (Contract research)

Nishiyama, Nariaki; Goto, Akira*; Tsukahara, Yuzuko; Kawamura, Makoto; Umeda, Koji*; Niwa, Masakazu

JAEA-Testing 2022-003, 51 Pages, 2022/09

JAEA-Testing-2022-003.pdf:5.24MB
JAEA-Testing-2022-003-appendix(CD-ROM).zip:1.12MB

Advancement of the evaluation technology of the magma activity range is essential as one of the technical issues related to volcanic and igneous activities in the evaluation of the long-term stability of the geological environment in the geological disposal of high-level radioactive waste. As an effective method, topographical analysis of volcanic edifices is expected to be used to determine the distribution area of dikes. In recent years, the development of computer-based topographic analysis technology has made it possible to simply perform a large volume of work that would otherwise be difficult due to the manual handling. This report describes an analysis method for the shape of contour lines that forms volcanic edifices using GIS software.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2022)

Sasao, Eiji; Ishimaru, Tsuneari; Niwa, Masakazu; Shimada, Akiomi; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.

JAEA-Review 2022-022, 29 Pages, 2022/09

JAEA-Review-2022-022.pdf:0.97MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2022. The objectives and contents in fiscal year 2022 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2020

Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Niwa, Masakazu; Shimada, Akiomi; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; et al.

JAEA-Research 2021-007, 65 Pages, 2021/10

JAEA-Research-2021-007.pdf:4.21MB

This annual report documents the progress of research and development (R&D) in the 6th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2021)

Ishimaru, Tsuneari; Kokubu, Yoko; Shimada, Koji; Shimada, Akiomi; Niwa, Masakazu; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.

JAEA-Review 2021-012, 48 Pages, 2021/08

JAEA-Review-2021-012.pdf:1.64MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2021. The objectives and contents in fiscal year 2021 are described in detail based on the JAEA 3rd Medium- and Long-term Plan (fiscal years 2015-2021). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2020)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Koji; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; Komatsu, Tetsuya; Yokoyama, Tatsunori; et al.

JAEA-Review 2020-010, 46 Pages, 2020/07

JAEA-Review-2020-010.pdf:1.89MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2020. The objectives and contents in fiscal year 2020 are described in detail based on the JAEA 3rd Medium- and Long-term Plan (fiscal years 2015-2021). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

Oral presentation

Holocene crustal movements recorded in fossil calcareous assemblages around the Cape Hane, Shikoku, Southwestern Japan

Tsukahara, Yuzuko; Kanno, Mizuho; Goto, Akira; Fujita, Natsuko; Komatsu, Tetsuya; Maemoku, Hideaki*

no journal, , 

Holocene crustal movements are recorded as fossil calcareous assemblages on rocky coast. It is possible to reconstruct crustal movements by summarizing these heights, structures and $$^{14}$$C ages. In this study, to clarify crustal movements, we collected calcareous assemblages and dated them using the $$^{14}$$C at Cape Hane. $$^{14}$$C ages show forming period of the lowest wave-cut-bench. However, it is difficult to determine the history of emerged events in a short cycle. To reconstruct the crustal movement history precisely, it is necessary to identify obvious multi-layer structures or discontinuous surfaces with time interval.

Oral presentation

Estimation of emergence age using feldspar OSL dating; Case studies in the Noto Peninsula and the Oi River

Ogata, Manabu; Tsukahara, Yuzuko; Kawamura, Makoto; Kanno, Mizuho; Nishiyama, Nariaki*; Sueoka, Shigeru; Komatsu, Tetsuya; Nakanishi, Toshimichi*; Yasue, Kenichi*

no journal, , 

Optically stimulated luminescence (OSL) dating method on feldspar is useful to date sediments on geomorphological time scale. In this presentation, we present the case studies for marine terraces in the Noto Peninsula and abandoned river valleys along the Oi River, for which the emergence ages were estimated by using feldspar OSL dating. This study was carried out as a part of the establishment of advanced technology for estimation of uplift rates using emergence ages of emergent landforms project.

Oral presentation

Quantifying incision rates using landforms and deposits of incised meandering rivers; A Case study in the middle reach of Oi River, Akaishi Range, Japan

Tsukahara, Yuzuko; Ogata, Manabu; Kawamura, Makoto; Kanno, Mizuho*; Nishiyama, Nariaki; Sueoka, Shigeru; Nakanishi, Toshimichi*; Komatsu, Tetsuya

no journal, , 

One hundred thousand-year-scale uplift rate of the Japanese mountains is estimated mainly based on the Terrace to Terrace method (TT method; Yoshiyama and Yanagida, 1995). To apply the TT method, it is necessary to identify the pair of the sedimentary terraces of the last glacial period and the one before last glacial period. However, there are many mountains where such terrace pairs are not recognized. Therefore, as an alternative method to the TT method, we suggest the method based on landforms and deposits of incised meandering rivers (for example, Yasue et al., 2014; Ogata et al., 2021). In this presentation, we will report the results of a survey conducted in the middle of the Oi River as part of such research.

9 (Records 1-9 displayed on this page)
  • 1