Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 217

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Dislocation core structure and motion in pure titanium and titanium alloys; A First-principles study

Tsuru, Tomohito; Itakura, Mitsuhiro; Yamaguchi, Masatake; Watanabe, Chihiro*; Miura, Hiromi*

Computational Materials Science, 203, p.111081_1 - 111081_9, 2022/02

The deformation mode of some titanium (Ti) alloys differs from that of pure Ti due to the presence of alloying elements in $$alpha$$-phase. Herein, we investigated all possible slip modes in pure Ti and the effects of Al and V solutes as typical additive elements on the dislocation motion in $$alpha$$-Ti alloys using density functional theory (DFT) calculations. The stacking fault (SF) energies in possible slip planes indicated that both Al and V solutes reduce the SF energy in the basal plane and, in contrast, the Al solute increases the SF energy particularly in the prismatic plane. DFT calculations were subsequently performed to simulate dislocation core structures. The energy landscape of the transition between all possible dislocation core structures and the barriers for dislocation glide in various slip planes clarified the nature of dislocation motion in pure Ti. (i) the energy of prismatic core is higher than most stable pyramidal core, and thereby dislocations need to overcome the energy barrier of the cross-slip (22.8 meV/b) when they move in the prismatic plane, (ii) the energy difference between the prismatic and basal cores is larger (127 meV/b), that indicates the basal slip does not activate, (iii) however, the Peierls barrier for motion in the basal plane is not as high (16 meV/b). Direct calculations for the dislocation core around solutes revealed that both Al and V solutes facilitate dislocation motion in the basal plane by reducing the energy difference between the prismatic and basal cores. The effect of solutes characterizes the difference in the deformation mode of pure Ti and $$alpha$$-Ti alloys.

Journal Articles

Inclination of self-interstitial dumbbells in molybdenum and tungsten; A First-principles study

Suzudo, Tomoaki; Tsuru, Tomohito

AIP Advances (Internet), 11(6), p.065012_1 - 065012_7, 2021/06

 Times Cited Count:0

In the current study, we analyzed the self-interstitial atoms (SIAs) in BCC molybdenum (Mo) and tungsten (W) in comparison with other BCC transition metals utilizing first-principles method; particularly, we focused on uncommon dumbbells, whose direction are inclined from $$<$$111$$>$$ toward $$<$$110$$>$$ on the {110} plane. Such a direction is not stable neither in the group 5 BCC metals (i.e., vanadium, niobium, and tantalum) nor in $$alpha$$-iron. Our first-principles relaxation simulations indicated that inclined dumbbells were more energetically-favored than common $$<$$111$$>$$ dumbbells in Mo, while this is not necessarily the case for W. However, under a certain degree of lattice strain, such as shear or expansive strain, could make inclined dumbbells more favored also in W, suggesting that the lattice strain can substantially influence the migration barrier of SIAs in these metals because inclined dumbbells generally have a larger migration barrier than $$<$$111$$>$$ dumbbells.

Journal Articles

Hydrogen-trapping energy in screw and edge dislocations in aluminum; First-principles calculations

Yamaguchi, Masatake; Itakura, Mitsuhiro; Tsuru, Tomohito; Ebihara, Kenichi

Materials Transactions, 62(5), p.582 - 589, 2021/05

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Evaluation of mechanical properties and materials design based on atomistic simulations

Tsuru, Tomohito

Materia, 60(1), p.25 - 29, 2021/01

The plastic deformation is determined by the average collective motion of dislocations. The subsequent interaction between dislocations in different slip planes contributes to the hardening process. In this paper, I develop parallelized molecular dynamics and visualization codes to simulate three-dimensional polycrystalline models including intergranular dislocation sources and explore a mechanism of T-C asymmetry for UFG metals. In addition, we performed the first-principles calculations of the dislocation core and examined the interaction energy between a screw dislocation and solute and the change in energy barrier for dislocation motion, where a quadrupolar configuration was used to evaluate the effects of solute on dislocation motion.

Journal Articles

Brittle-fracture simulations of curved cleavage cracks in $$alpha$$-iron; A Molecular dynamics study

Suzudo, Tomoaki; Ebihara, Kenichi; Tsuru, Tomohito

AIP Advances (Internet), 10(11), p.115209_1 - 115209_8, 2020/11

 Times Cited Count:2 Percentile:24.67(Nanoscience & Nanotechnology)

The mechanism of their brittle fracture of BCC metals is not fully understood. In this study, we conduct a series of three-dimensional molecular dynamics simulations of cleavage fracture of $$alpha$$-iron. In particular, we focus on mode-I loading starting from curved crack fronts. In the simulations, brittle fractures are observed at cleavages on the {100} plane, while the initial cracks become blunted on other planes as a result of dislocation emissions. Our modeling results agreed with a common experimental observation, that is, {100} is the preferential cleavage plane in bcc transition metals.

Journal Articles

Spontaneous debonding behaviour of reinforcement fine particles in aluminium; Toward high-strength metallic materials development

Toda, Hiroyuki*; Tsuru, Tomohito; Yamaguchi, Masatake; Matsuda, Kenji*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*

Kagaku, 75(10), p.48 - 53, 2020/10

Highly-concentrated precipitations play therefore dominant role in mechanical properties and hydrogen embrittlement of aluminum alloys. It has been considered that the coherent interface between matrix and precipitation does not contribute to the crack initiation and embrittlement due to its coherency. Here, we discovered the origin of unprecedented quasi-cleavage fracture mode. Hydrogen partitioning at various defect sites is investigated comprehensively combined with experiment, theory and first-principles calculations. We demonstrate that despite low excess free volume, the aluminum-precipitation interface is more preferable trap site than void and grain boundary. The cohesivity of the interface deteriorates significantly with increasing occupancy while hydrogen atoms are trapped stably up to extremely high occupancy equivalent to spontaneous cleavage.

Journal Articles

Hydrogen trapping in Mg$$_2$$Si and Al$$_7$$FeCu$$_2$$ intermetallic compounds in aluminum alloy; First-principles calculations

Yamaguchi, Masatake; Tsuru, Tomohito; Ebihara, Kenichi; Itakura, Mitsuhiro; Matsuda, Kenji*; Shimizu, Kazuyuki*; Toda, Hiroyuki*

Materials Transactions, 61(10), p.1907 - 1911, 2020/10

 Times Cited Count:2 Percentile:26.63(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Change in damping capacity arising from twin-boundary segregation in solid-solution magnesium alloys

Somekawa, Hidetoshi*; Basha, D. A.*; Singh, A.*; Tsuru, Tomohito; Watanabe, Hiroyuki*

Philosophical Magazine Letters, 100(10), p.494 - 505, 2020/10

 Times Cited Count:2 Percentile:45.37(Materials Science, Multidisciplinary)

The damping capacity in the vicinity of {10$$bar{1}$$2} twin boundaries was measured before and after annealing by nano-dynamic mechanical analysis. The subsequent annealing process led to a lower damping capacity in all magnesium binary alloys, which was in contrast to the results in pure magnesium. This is on account of the segregation of solute atoms in incoherent twin boundaries. The alloying elements, which have the characteristic of a low segregation energy for twin boundaries, effectively prevents the damping capacity degradation.

Journal Articles

The Possible transition mechanism for the meta-stable phase in the 7xxx aluminium

Bendo, A.*; Matsuda, Kenji*; Nishimura, Katsuhiko*; Nunomura, Norio*; Tsuchiya, Taiki*; Lee, S.*; Marioara, C. D.*; Tsuru, Tomohito; Yamaguchi, Masatake; Shimizu, Kazuyuki*; et al.

Materials Science and Technology, 36(15), p.1621 - 1627, 2020/09

 Times Cited Count:1 Percentile:0(Materials Science, Multidisciplinary)

Metastable phases in aluminum alloys are the primary nano-scale precipitates which have the biggest contribution to the increase in the tangible mechanical properties. The continuous increase in hardness in the 7xxx aluminum alloys is associated with the phase transformation from clusters or GP-zones to the metastable $$eta'$$ phase. The transformation which is structural and compositional should occur following the path of the lowest activation energy. This work is an attempt to gain insight into how the structural transformation may occur based on the shortest route of diffusion for the eventual structure to result in that of $$eta'$$ phase. However, for the compositional transformation to occur, the proposed mechanism may not stand, since it is a prerequisite for the atoms to be at very precise positions in the aluminum lattice, at the very beginning of structural transformation, which may completely differ from that of the GP-zones atomic arrangements.

Journal Articles

Chapter 4, Modeling of mechanical properties

Ogata, Shigenobu*; Tsuru, Tomohito; Yuge, Koretaka*

Haientoropi Gokin; Kakuteru Koka Ga Umidasu Tasai Na Shinbussei, p.107 - 158, 2020/05

High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of five or more elements. These new alloys found to have excellent properties. In this chapter, we introduced how to express the mechanical properties using atomic models.

Journal Articles

Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys

Tsuru, Tomohito; Shimizu, Kazuyuki*; Yamaguchi, Masatake; Itakura, Mitsuhiro; Ebihara, Kenichi; Bendo, A.*; Matsuda, Kenji*; Toda, Hiroyuki*

Scientific Reports (Internet), 10, p.1998_1 - 1998_8, 2020/04

 Times Cited Count:5 Percentile:69.45(Multidisciplinary Sciences)

Age-hardening has been one and only process to achieve high strength aluminum alloys since unlike iron and titanium, pure aluminum does not have other solid phases during heat treatment. Highly-concentrated precipitations play therefore dominant role in mechanical properties and hydrogen embrittlement of aluminium alloys. It has been considered that the coherent interface between matrix and precipitation does not contribute to the crack initiation and embrittlement due to its coherency. Here, we discovered the origin of unprecedented quasi-cleavage fracture mode. Hydrogen partitioning at various defect sites is investigated comprehensively combined with experiment, theory and first-principles calculations. We demonstrate that despite low excess free volume, the aluminum-precipitation interface is more preferable trap site than void and grain boundary. The cohesivity of the interface deteriorates significantly with increasing occupancy while hydrogen atoms are trapped stably up to extremely high occupancy equivalent to spontaneous cleavage.

Journal Articles

Alloy design for improvement of ductility and toughness in magnesium alloy; First-principles-calculation approaches

Tsuru, Tomohito

Keikinzoku, 70(2), p.73 - 81, 2020/02

Elements strategy becomes important to investigate alternative materials of rare metals. I have dedicated to establish a new approach based on computational methods. In the present paper, I propose two approaches based on first-principles and theory of dislocations. These methods are introduced to magnesium alloys.

Journal Articles

Anomalous solution softening by unique energy balance mediated by kink mechanism in tungsten-rhenium alloys

Tsuru, Tomohito; Wakeda, Masato*; Suzudo, Tomoaki; Itakura, Mitsuhiro; Ogata, Shigenobu*

Journal of Applied Physics, 127(2), p.025101_1 - 025101_9, 2020/01

 Times Cited Count:1 Percentile:24.67(Physics, Applied)

We explored softening/strengthening behavior in various solute in W matrix by density functional theory (DFT) calculations combined with solid solution model. As a result of DFT calculations for various solute, a clear trend was observed in the interaction energy between a solute and a screw dislocation, which has predominant influence on solid solution behavior. The predictions based on the solid solution model with DFT can reasonably reproduce the complicated softening/strengthening as a function of temperature and solute concentration. We conclude that this specific balance is the origin of macroscopic solid solution softening.

Journal Articles

An Unreported precipitate orientation relationship in Al-Zn-Mg based alloys

Bendo, A.*; Matsuda, Kenji*; Lervik, A.*; Tsuru, Tomohito; Nishimura, Katsuhiko*; Nunomura, Norio*; Holmestad, R.*; Marioara, C. D.*; Shimizu, Kazuyuki*; Toda, Hiroyuki*; et al.

Materials Characterization, 158, p.109958_1 - 109958_7, 2019/12

 Times Cited Count:9 Percentile:78.99(Materials Science, Multidisciplinary)

Characterization of precipitates in Al-Zn-Mg alloys, using a combination of electron diffraction, bright field transmission electron microscopy and atomic scale scanning transmission electron microscopy imaging revealed the presence of an unreported $$eta$$$$_{13}$$ orientation relationship between the $$eta$$-MgZn$$_2$$ phase and the Al lattice with the following orientation relationship (0001)$$eta$$ $$||$$ (120)$$_{rm Al}$$ and ($$2bar{1}bar{1}0$$)$$eta$$ $$||$$ (001)$$_{rm Al}$$, plate on (120)$$_{rm Al}$$. The precipitate interfaces were observed and analyzed along two projections 90$$^{circ}$$ to one-another. The precipitate coarsening was through the common thickening ledge mechanism. The ledges were significantly stepped along one lateral direction. An interface relaxation model using density functional theory was carried out to explain the precipitate behavior.

Journal Articles

First-principles modeling for dislocation motion of HEA alloys

Tsuru, Tomohito; Itakura, Mitsuhiro; Yuge, Koretaka*; Aoyagi, Yoshiteru*; Shimokawa, Tomotsugu*; Kubo, Momoji*; Ogata, Shigenobu*

Proceedings of 4th International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics (ISAM-4) (Internet), p.59 - 62, 2019/08

High entropy alloys (HEAs) are chemically complex single- or multi-phase alloys with crystal structures. There are no major components but five or more elements are included with near equiatomic fraction. In such a situation, deformation behavior can no longer be described by conventional solid solution strengthening model. Some HEAs, indeed, show higher strengthening behavior and anomalous slip. However, the mechanisms of these features have yet to be understood. In the present study, we investigate the core structure of dislocations in BCC-HEAs using density functional theory (DFT) calculations. We found that core structure of a screw dislocation is identified as is the case with common BCC metals. On the other hand, dislocation motion should be different from pure BCC metals because of chemical and configurational disorder around dislocation core. We confirmed the specific feature of dislocation motion in HEAs by two-dimensional Peierls potential surface.

Journal Articles

Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium

Yang, P.-J.*; Li, Q.-J.*; Tsuru, Tomohito; Ogata, Shigenobu*; Zhang, J.-W.*; Sheng, H.-W.*; Shan, Z.-W.*; Sha, G.*; Han, W.-Z.*; Li, J.*; et al.

Acta Materialia, 168, p.331 - 342, 2019/04

 Times Cited Count:17 Percentile:90.93(Materials Science, Multidisciplinary)

Body-centred-cubic metallic materials, such as niobium (Nb) and other refractory metals, are prone to embrittlement due to low levels of oxygen solutes. The mechanisms responsible for the oxygen-induced rampant hardening and damage are unclear. Here we illustrate that screw dislocations moving through a random repulsive force field imposed by impurity oxygen interstitials readily form cross-kinks and emit excess vacancies in Nb. The vacancies bind strongly with oxygen and screw dislocation in a three-body fashion, rendering dislocation motion difficult and hence pronounced dislocation storage and hardening. This leads to unusually high strain hardening rates and fast breeding of nano-cavities that underlie damage and failure.

Journal Articles

Optimization of mechanical properties in aluminum alloys $$via$$ hydrogen partitioning control

Toda, Hiroyuki*; Yamaguchi, Masatake; Matsuda, Kenji*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Su, H.*; Fujiwara, Hiro*; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; et al.

Tetsu To Hagane, 105(2), p.240 - 253, 2019/02

 Times Cited Count:0 Percentile:0(Metallurgy & Metallurgical Engineering)

no abstracts in English

Journal Articles

First-principles calculation of multiple hydrogen segregation along aluminum grain boundaries

Yamaguchi, Masatake; Ebihara, Kenichi; Itakura, Mitsuhiro; Tsuru, Tomohito; Matsuda, Kenji*; Toda, Hiroyuki*

Computational Materials Science, 156, p.368 - 375, 2019/01

 Times Cited Count:11 Percentile:71.82(Materials Science, Multidisciplinary)

The segregation of multiple hydrogen atoms along aluminum (Al) grain boundaries (GBs) and fracture surfaces (FSs) was investigated through first-principles calculations considering the characteristics of GBs. The results indicate that hydrogen segregation is difficult along low-energy GBs. The segregation energy of multiple hydrogen atoms along GBs and FSs and the cohesive energy was obtained for three types of high-energy Al GBs. With increasing hydrogen segregation along the GBs, the cohesive energy of the GB decreases and approaches zero with no decrease in GB segregation energy. The GB cohesive energy decreases in parallel with the volume expansion of the region of low electron density along the GB.

Journal Articles

Surface energy reduction by dissociative hydrogen adsorption on inner surface of pore in aluminum

Yamaguchi, Masatake; Tsuru, Tomohito; Ebihara, Kenichi; Itakura, Mitsuhiro

Keikinzoku, 68(11), p.588 - 595, 2018/11

no abstracts in English

Journal Articles

Interpretation of thermal desorption spectra of hydrogen from aluminum using numerical simulation

Ebihara, Kenichi; Yamaguchi, Masatake; Tsuru, Tomohito; Itakura, Mitsuhiro

Keikinzoku, 68(11), p.596 - 602, 2018/11

Hydrogen embrittlement (HE) is considered as one cause of stress corrosion cracking. HE is a serious problem in the development of high strength aluminum alloy as with steels. For understanding HE, it is inevitable to know hydrogen trapping states in the alloys and it can be identified using thermal desorption spectrometry of H. In this study, we numerically simulated thermal desorption spectra of hydrogen in aluminum for a cylindrical and a plate specimens and interpreted the desorption peaks included in them on the basis of the trap site concentration and the trap energy. As a result, we found that the peak at the lowest-temperature side can result from grain boundaries and confirmed that the reported interpretation for other peaks is reasonable. We also obtained the result showing the possibility that the trap site concentration of defects changes during heating the specimens. This result may give a suggestion for the interpretation of temperature desorption spectra of steels.

217 (Records 1-20 displayed on this page)