Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 35

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Low-power proton beam extraction by the bright continuous laser using the 3-MeV negative-hydrogen linac in Japan Proton Accelerator Research Complex

Takei, Hayanori; Tsutsumi, Kazuyoshi*; Meigo, Shinichiro

Journal of Nuclear Science and Technology, 58(5), p.588 - 603, 2021/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The Japan Atomic Energy Agency (JAEA) has designed a Transmutation Physics Experimental Facility (TEF-P) as an experimental facility in the Japan Proton Accelerator Research Complex (J-PARC). The TEF-P is a critical assembly driven by a low-power proton beam, a maximum of 10 W, which is extracted from a high-power beam source, such as 250 kW of 400 MeV proton beam of the J-PARC Linac. To extract such a low-power proton beam from the high-power proton beam, we developed a laser charge exchange (LCE) device and employed its technique, which is one of the non-contact beam extraction techniques. For the proof of performance of the LCE device to the TEF-P, a low-power proton beam was extracted using a negative-hydrogen (H$$^{-}$$) Linac having an energy of 3 MeV, and a bright continuous laser. Proton beam with the power of 0.57 mW was successfully extracted with a laser stripping efficiency of $$2.3times10^{-5}$$. These experimental values are in good agreement with the estimated ones.

Journal Articles

Long beam pulse extraction by the laser charge exchange method using the 3-MeV linac in J-PARC

Takei, Hayanori; Hirano, Koichiro; Meigo, Shinichiro; Tsutsumi, Kazuyoshi*

Proceedings of 8th International Beam Instrumentation Conference (IBIC 2019) (Internet), p.595 - 599, 2020/06

Japan Proton Accelerator Research Complex (J-PARC) has a plan to build the Transmutation Physics Experimental Facility (TEF-P), in which a 400-MeV proton beam will be delivered from negative hydrogen (H$$^{-}$$) accelerated by the linac. Since the TEF-P requires a stable proton beam with a power of less than 10 W, a steady and meticulous beam extraction method is required to extract a small amount of the proton beam from the high power beam using 250 kW. To fulfill this requirement, we have developed beam extraction based on the Laser Charge Exchange (LCE) method. For the demonstration present beam extraction technique, an experiment was conducted using H$$^{-}$$ beam accelerated by the 3-MeV linac at RFQ test-stand in J-PARC. As a result of the experiment with continuous wave (CW) of the Laser, a charge-exchanged long-pulsed H$$^{+}$$ beam with a power of about 0.70 W equivalent was successfully obtained under the TEF-P beam condition.

Journal Articles

Beam extraction by the laser charge exchange method using the 3-MeV LINAC in J-PARC

Takei, Hayanori; Hirano, Koichiro; Tsutsumi, Kazuyoshi; Meigo, Shinichiro

Plasma and Fusion Research (Internet), 13(Sp.1), p.2406012_1 - 2406012_6, 2018/03

The Japan Proton Accelerator Research Complex (J-PARC) has a plan to build the Transmutation Physics Experimental Facility (TEF-P), in which a 400-MeV negative proton (H$$^{-}$$) beam will be delivered from the J-PARC linac. Since the TEF-P requires a stable proton beam with a power of less than 10 W, a stable and meticulous beam extraction method is required to extract a small amount of the proton beam from the high power beam using 250 kW. To fulfil this requirement, the Laser Charge Exchange (LCE) method has been developed. To demonstrate the charge exchange of the H$$^{-}$$, a preliminary LCE experiment was conducted using a linac with energy of 3 MeV in J-PARC. As a result of the experiment, a charge-exchanged H$$^{+}$$ beam with a power of about 8 W equivalent and an accuracy of about 2% was obtained under the J-PARC linac beam condition.

Journal Articles

Beam extraction by the laser charge exchange method using the 3-MeV linac in J-PARC

Takei, Hayanori; Hirano, Koichiro; Meigo, Shinichiro; Tsutsumi, Kazuyoshi*

Proceedings of 6th International Beam Instrumentation Conference (IBIC 2017) (Internet), p.435 - 439, 2018/03

The Japan Proton Accelerator Research Complex (J-PARC) has a plan to build the Transmutation Physics Experimental Facility (TEF-P), in which a 400-MeV negative proton (H$$^{-}$$) beam will be delivered from the J-PARC linac. Since the TEF-P requires a stable proton beam with a power of less than 10 W, a stable and meticulous beam extraction method is required to extract a small amount of the proton beam from the high power beam using 250 kW. To fulfil this requirement, the Laser Charge Exchange (LCE) method has been developed. To demonstrate the charge exchange of the H$$^{-}$$, a preliminary LCE experiment was conducted using a linac with energy of 3 MeV in J-PARC. As a result of the experiment, a charge-exchanged H$$^{+}$$ beam with a power of about 8 W equivalent and an accuracy of about 2% was obtained under the J-PARC linac beam condition.

Journal Articles

A 3 MeV linac for development of accelerator components at J-PARC

Kondo, Yasuhiro; Asano, Hiroyuki*; Chishiro, Etsuji; Hirano, Koichiro; Ishiyama, Tatsuya; Ito, Takashi; Kawane, Yusuke; Kikuzawa, Nobuhiro; Meigo, Shinichiro; Miura, Akihiko; et al.

Proceedings of 28th International Linear Accelerator Conference (LINAC 2016) (Internet), p.298 - 300, 2017/05

We have constructed a linac for development of various accelerator components at J-PARC. The ion source is same as the J-PARC linac's, and the RFQ is a used one in the J-PARC linac. The beam energy is 3 MeV and nominal beam current is 30 mA. The accelerator has been already commissioned, and the first development program, laser-charge-exchange experiment for the transmutation experimental facility, has been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Present status of the laser charge exchange test using the 3-MeV linac in J-PARC

Takei, Hayanori; Chishiro, Etsuji; Hirano, Koichiro; Kondo, Yasuhiro; Meigo, Shinichiro; Miura, Akihiko; Morishita, Takatoshi; Oguri, Hidetomo; Tsutsumi, Kazuyoshi

Proceedings of 5th International Beam Instrumentation Conference (IBIC 2016) (Internet), p.736 - 739, 2017/03

The Accelerator-driven System (ADS) is one of the candidates for transmuting long-lived nuclides, such as minor actinide (MA), produced by nuclear reactors. For efficient transmutation of the MA, a precise pre-diction of neutronics of ADS is required. In order to obtain the neutronics data for the ADS, the Japan Pro-ton Accelerator Research Complex (J-PARC) has a plan to build the Transmutation Physics Experimental Facility (TEF-P), in which a 400-MeV negative proton (H$$^{-}$$) beam will be delivered from the J-PARC linac. Since the TEF-P requires a stable proton beam with a power of less than 10W, a stable and meticulous beam extraction method is required to extract a small amount of the proton beam from the high power beam using 250kW. To fulfil this requirement, the Laser Charge Exchange (LCE) method has been developed. The LCE strips the electron of the H$$^{-}$$ beam and neutral protons will separate at the bending magnet in the proton beam transport. To demonstrate the charge exchange of the H$$^{-}$$, a preliminary LCE experiment was conducted using a linac with energy of 3MeV in J-PARC. As a result of the experiment, a charge-exchanged H$$^{+}$$ beam with a power of about 5W equivalent was obtained under the J-PARC linac beam condition, and this value almost satisfied the power requirement of the proton beam for the TEF-P.

Journal Articles

Preliminary results of the laser charge exchange test using the 3-MeV linac in J-PARC

Takei, Hayanori; Hirano, Koichiro; Tsutsumi, Kazuyoshi; Chishiro, Etsuji; Miura, Akihiko; Kondo, Yasuhiro; Morishita, Takatoshi; Oguri, Hidetomo; Meigo, Shinichiro

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.987 - 991, 2016/11

Accelerator-driven system (ADS) is one of candidates to transmute long-lived nuclides such as minor actinide (MA) produced at nuclear reactor. For efficient transmutation of the MA, precise prediction of neutronics of ADS is indispensable. In order to obtain the neutronics data for the ADS, J-PARC has a plan to build the Transmutation Physics Experimental Facility (TEF-P). Since the TEF-P requires stable power of the beam and will operate with thermal power less than 500 W and the proton beam power of 10 W so that a stable and meticulous beam extraction method is required to extract small amount of the beam from the high power LINAC beam with 250 kW. To fulfill requirement, Laser charge exchange method (LCE) has been developed for delivery of 400-MeV proton beam with 25Hz to the TEF-P. The LCE strips the electron of H$$^{-}$$ beam and H$$^{0}$$ will separate at the bending magnet at the proton beam transport. The LCE device consists of YAG-laser with high power as 1.6 J/shot and 25 Hz and transport control system with high accuracy of the beam position. For the demonstration of the charge exchange of the H$$^{-}$$, the further LCE tests is conducted using H$$^{-}$$ beam with energy of 3-MeV at RFQ test stand in J-PARC. In this paper, present status of LCE tests is presented.

Journal Articles

Safety managements of the linear IFMIF/EVEDA prototype accelerator

Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi

Fusion Engineering and Design, 89(9-10), p.2066 - 2070, 2014/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Status quo of the injector for the IFMIF/EVEDA prototype accelerator

Shinto, Katsuhiro; Ichikawa, Masahiro; Takahashi, Yasuyuki*; Kubo, Takashi*; Tsutsumi, Kazuyoshi; Kikuchi, Takayuki; Kasugai, Atsushi; Sugimoto, Masayoshi; Gobin, R.*; Girardot, P.*; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1009 - 1012, 2014/10

The prototype accelerator is being developed as an engineering validation for the International Fusion Materials Irradiation Facility (IFMIF) equipped with an accelerator-driven-type neutron source for developing fusion reactor materials. This prototype accelerator is a deuteron linear accelerator consisting of an injector, an RFQ, a superconducting linac and their auxiliaries. It aims to produce a CW D$$^+$$ beam with the energy and current of 9 MeV/125 mA. The injector test was completed at CEA/Saclay in 2012 for producing a CW H$$^+$$ beam and a CW D$$^+$$ beam with the energy and current of 100 keV/140 mA. After the beam test at CEA/Saclay, the injector was transported to the International Fusion Energy Research Centre (IFERC) located in Rokkasho, Aomori, Japan. In the end of 2013, installation of the injector was started at IFERC for the injector beam test beginning from summer 2014 in order to obtain better beam qualities to be satisfied with the injection and acceleration of the following accelerators. In this paper, some results of the injector beam test performed at CEA/Saclay and the status quo of the installation of the injector at IFERC are presented.

Journal Articles

High-energy spin and charge excitations in electron-doped copper oxide superconductors

Ishii, Kenji; Fujita, Masaki*; Sasaki, Takanori*; Minola, M.*; Dellea, G.*; Mazzoli, C.*; Kummer, K.*; Ghiringhelli, G.*; Braicovich, L.*; Toyama, Takami*; et al.

Nature Communications (Internet), 5, p.3714_1 - 3714_8, 2014/04

 Times Cited Count:75 Percentile:94.66(Multidisciplinary Sciences)

Journal Articles

$$gamma$$-ray and neutron area monitoring system of linear IFMIF prototype accelerator building

Takahashi, Hiroki; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Maebara, Sunao; Sakaki, Hironao; Nishiyama, Koichi

Fusion Engineering and Design, 88(9-10), p.2736 - 2739, 2013/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

For radiation safety of the Linear IFMIF Prototype Accelerator, $$gamma$$-ray and neutron area monitoring system are designed. This system monitors and records the measured data by using both a supervisory board in the access room and central control system. The interlock signals are sent to Personnel Protection System (PPS) and Machine Protection System (MPS) when the integrated dose value exceeds a threshold value. After receiving them, the PPS and the MPS immediately inhibit the beam operation for secure radiation safety. This monitoring system is designed to achieve a high reliability for data transfer using hardwired interlock signals and the performance of data communication between area monitoring system and control system.

Journal Articles

Development status of PPS, MPS and TS for IFMIF/EVEDA prototype accelerator

Takahashi, Hiroki; Kojima, Toshiyuki; Tsutsumi, Kazuyoshi; Narita, Takahiro; Nishiyama, Koichi; Sakaki, Hironao; Maebara, Sunao

Proceedings of 2nd International Particle Accelerator Conference (IPAC 2011) (Internet), p.1734 - 1736, 2011/09

Control system for the IFMIF/EVEDA prototype accelerator consists of six subsystems; Central Control System (CCS), Local Area Network (LAN), Personnel Protection System (PPS), Machine Protection System (MPS), Timing System (TS) and Local Control System (LCS). The Prototype Accelerator provides the deuteron beam with the beam power more than 1 MW, and this control system is required the high reliability and usability to perform various operation modes for beam commissioning. To satisfy these requirements, we are developing mainly PPS, MPS and TS at the beginning. This paper presents the status of hardware development of the PPS, MPS and TS.

Journal Articles

Developments of in-situ SEOP polarized $$^{3}$$He neutron spin filter in Japan

Kira, Hiroshi; Sakaguchi, Yoshifumi; Oku, Takayuki; Suzuki, Junichi; Nakamura, Mitsutaka; Arai, Masatoshi; Endo, Yasuo; Chang, L.-J.; Kakurai, Kazuhisa; Arimoto, Yasushi*; et al.

Journal of Physics; Conference Series, 294, p.012014_1 - 012014_5, 2011/06

 Times Cited Count:11 Percentile:95.64

Journal Articles

Applications of $$^{3}$$He neutron spin filters on the small-angle neutron scattering spectrometer SANS-J-II

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Aizawa, Kazuya; Arai, Masatoshi; Noda, Yohei; et al.

Journal of Physics; Conference Series, 294(1), p.012017_1 - 012017_7, 2011/06

 Times Cited Count:2 Percentile:68.37

Journal Articles

Structure of glasses for $$^{3}$$He neutron spin filter cells

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.

Journal of Physics; Conference Series, 294(1), p.012004_1 - 012004_7, 2011/06

 Times Cited Count:2 Percentile:68.37

Journal Articles

Development and test of SEOP neutron spin filter in Japan

Kira, Hiroshi; Sakaguchi, Yoshifumi; Oku, Takayuki; Suzuki, Junichi; Nakamura, Mitsutaka; Arai, Masatoshi; Kakurai, Kazuhisa; Endo, Yasuo; Arimoto, Yasushi*; Ino, Takashi*; et al.

Physica B; Condensed Matter, 406(12), p.2433 - 2435, 2011/06

 Times Cited Count:8 Percentile:39.13(Physics, Condensed Matter)

Journal Articles

Research on glass cells for $$^{3}$$He neutron spin filters

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.

Physica B; Condensed Matter, 406(12), p.2443 - 2447, 2011/06

Journal Articles

Research on glass cells for $$^{3}$$He neutron spin filters

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.

Physica B; Condensed Matter, 406(12), p.2443 - 2447, 2011/06

 Times Cited Count:3 Percentile:17.85(Physics, Condensed Matter)

Journal Articles

Characterization of glasses for $$^{3}$$He neutron spin filter cells

Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Arai, Masatoshi; Takeda, Masayasu; et al.

Nuclear Instruments and Methods in Physics Research A, 634(1, Suppl.), p.S122 - S125, 2011/04

Journal Articles

Development status of MPS for the IFMIF/EVEDA accelerator

Narita, Takahiro; Kojima, Toshiyuki; Tsutsumi, Kazuyoshi; Takahashi, Hiroki; Sakaki, Hironao

Proceedings of 7th Annual Meeting of Particle Accelerator Society of Japan (DVD-ROM), p.673 - 676, 2010/08

no abstracts in English

35 (Records 1-20 displayed on this page)