Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Computational analysis of the spatial distributions of low-energy electrons generated via water photolysis and photoinjection into electrodes in water

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke*; Hirata, Yuho; Tsuchida, Hidetsugu*; Yokoya, Akinari*

Journal of Chemical Physics, 162(15), p.154102_1 - 154102_11, 2025/04

 Times Cited Count:0 Percentile:0.00(Chemistry, Physical)

Scientific knowledge of low-energy electrons resulting from water radiolysis is required to estimate radiation DNA damage. However, since the analysis of water radiolysis is very complex, this study focuses on the experimental values of low-energy electrons related to simple water photolysis and those generated by photoirradiation of electrodes in water. Both experimental analyses involve the presence or absence of a Coulomb field in the parent ion. In this study, we analyzed these experimental values using a calculation code that combines Monte Carlo and molecular dynamics methods. As a result, it was shown that the code reproduced the experimental values even under different experimental conditions, and the code was validated. The calculation code will be a powerful tool for analyzing the interaction between low-energy electrons and DNA, and is expected to be applied to elucidate the formation mechanism of radiation DNA damage.

Journal Articles

Multiple DNA damages induced by water radiolysis demonstrated using a dynamic Monte Carlo code

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke*; Hirata, Yuho; Tsuchida, Hidetsugu*; Ito, Yuma*; Yokoya, Akinari*

Communications Chemistry (Internet), 8, p.60_1 - 60_9, 2025/03

 Times Cited Count:1 Percentile:83.04(Chemistry, Multidisciplinary)

Radiation DNA damage is formed from direct and indirect effects. The direct effect is the interaction between DNA and a radiation, while the indirect effect is the chemical reaction between DNA and radiolytic chemical species. We believed that when the direct effect is induced, multiple lesions are formed within 10 base pairs (about 3.4 nm) of DNA. The damage reduces repair efficiency and induces biological effects. In this study, DNA damage induced by only indirect effects was quantitatively evaluated. Our results indicated that the multiple damage is formed when only 10s of eV energy is deposited to water in the vicinity of DNA, although its formation probability is less than 1%. In other words, the possibility of late biological effects cannot be excluded simply by imparting energy to water in the extreme vicinity of DNA without direct interaction between radiation and DNA. Our results are one of the most important findings for understanding low-dose radiation risk.

JAEA Reports

Decommissioning report for Wastewater Treatment Facility (Part 2); Chapter on contamination inspection section

Yamamoto, Keisuke; Nakagawa, Takuya; Shimojo, Hiroto; Kijima, Jun; Miura, Daiya; Onose, Yoshihiko*; Namba, Koji*; Uchida, Hiroaki*; Sakamoto, Kazuhiko*; Ono, Chika*; et al.

JAEA-Technology 2024-019, 211 Pages, 2025/02

JAEA-Technology-2024-019.pdf:35.35MB

The uranium enrichment facilities at the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency (JAEA) were constructed sequentially to develop uranium enrichment technology with centrifugal separation method. The developed technologies were transferred to Japan Nuclear Fuel Limited until 2001. And the original purpose has been achieved. Wastewater Treatment Facility, one of the uranium enrichment facilities, was constructed in 1976 to treat radioactive liquid waste generated at the facilities, and it finished the role in 2008. In accordance with the Medium/Long-Term Management Plan of JAEA Facilities, interior equipment installed in this facility had been dismantled and removed since November 2021 to August 2023. This report summarizes the findings obtained through the work related to the contamination inspection methods cancellation the controlled area of Wastewater Treatment Facility from September 2023 to March 2024.

Journal Articles

Significant role of secondary electrons in the formation of a multi-body chemical species spur produced by water radiolysis

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke*; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Yokoya, Akinari*

Scientific Reports (Internet), 14, p.24722_1 - 24722_15, 2024/10

 Times Cited Count:2 Percentile:65.89(Multidisciplinary Sciences)

Scientific insight of water radiolysis is essential to estimate the direct and indirect effects of radiation DNA damage. Secondary electrons produced by water radiolysis are responsible for both effects. Here, we use a first-principles code to calculate the femtosecond dynamics of secondary electrons produced as a result of 20-30 eV energy deposition to water and analyze the formation mechanism of radiolytic chemical species produced in a nano-size ultra-small space region. From the results, it was clarified that the chemical species produced by water radiolysis begin to densify in the ultra-small region of a few nanometers when the deposition energy exceeds 25 eV. Our results provide important scientific insights into the formation of clustered DNA damage, which is believed to cause biological effects such as cell death.

Journal Articles

First-principles simulation of an ejected electron produced by monochromatic deposition energy to water at the femtosecond order

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Yokoya, Akinari*

RSC Advances (Internet), 13(46), p.32371 - 32380, 2023/11

 Times Cited Count:4 Percentile:41.44(Chemistry, Multidisciplinary)

Although scientific knowledge of photolysis and radiolysis of water is widely used in the life sciences and other fields, the formation mechanism of the spatial distribution of hydrated electrons (spur) resulting from energy deposition to water is still not well understood. The chemical reaction times of hydrated electrons, OH radicals, and H$$_{3}$$O$$^{+}$$ in the spur strongly depend on the spur radius. In our previous study, we elucidated the mechanism at a specific given energy (12.4 eV) by first-principles calculations. In the present study, we performed first-principles calculations of the spur radius at the deposition energies of 11-19 eV. The calculated spur radius is 3-10 nm, which is consistent with the experimental prediction (~4 nm) for the energy range of 8-12.4 eV, and the spur radius gradually increases with increasing energy. The spur radius is a new scientific knowledge and is expected to be widely used for estimating radiation DNA damage.

Journal Articles

Initial yield of hydrated electron production from water radiolysis based on first-principles calculation

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke*; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Yokoya, Akinari*

RSC Advances (Internet), 13(11), p.7076 - 7086, 2023/03

 Times Cited Count:10 Percentile:73.00(Chemistry, Multidisciplinary)

Scientific insights of water radiolysis are widely used in the life sciences and so on, however, the formation mechanism of radicals, a product of water radiolysis, is still not well understood. We are challenging to develop a simulation code to solve this formation mechanism from the viewpoint of radiation physics. Our first-principles calculations have revealed that the behavior of secondary electrons in water is governed not only by collisional effects but also by polarization effects. Furthermore, from the predicted ratio of ionization to electronic excitation, based on the spatial distribution of secondary electrons, we successfully reproduce the initial yield of hydrated electrons predicted in terms of radiation chemistry. The code provides us a reasonable spatiotemporal connection from radiation physics to radiation chemistry. Our findings are expected to provide newly scientific insights for understanding the earliest stages of water radiolysis.

Journal Articles

Convergence behavior in line profile analysis using convolutional multiple whole-profile software

Kumagai, Masayoshi*; Uchida, Tomohiro*; Murasawa, Kodai*; Takamura, Masato*; Ikeda, Yoshimasa*; Suzuki, Hiroshi; Otake, Yoshie*; Hama, Takayuki*; Suzuki, Shinsuke*

Materials Research Proceedings, Vol.6, p.57 - 62, 2018/10

 Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)

Journal Articles

Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility

Li, T.*; Garg, U.*; Liu, Y.*; Marks, R.*; Nayak, B. K.*; Madhusudhana Rao, P. V.*; Fujiwara, Mamoru*; Hashimoto, Hisanobu*; Nakanishi, Kosuke*; Okumura, Shun*; et al.

Physical Review C, 81(3), p.034309_1 - 034309_11, 2010/03

 Times Cited Count:118 Percentile:97.60(Physics, Nuclear)

Oral presentation

Computer simulation of the earliest processes of radiation biological effects of; Direct and indirect effects of DNA damage

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Ito, Yuma*; Yokoya, Akinari*

no journal, , 

Irradiation of living systems forms complex DNA damage that induces biological effects in very rare cases. This complex DNA damage is called cluster damage and is very difficult to detect experimentally. In this study, we have developed physical and chemical codes for analyzing DNA damage, and are working to elucidate the formation mechanism of cluster damage. In this study, we analyzed the results of calculations in a simple system in which energy is deposited to DNA and secondary electrons are emitted, and showed that the formation mechanism of cluster damage strongly depends on the deposition energy to DNA. This scientific insight is expected to contribute to the elucidation of the repair mechanism of DNA damage and lead to the elucidation of radiation biological effects.

Oral presentation

Three-dimensional resistivity structure of the epicenter area of the 1997 Kagoshima earthquake doublet, Japan

Matsunaga, Keita*; Aizawa, Koki*; Asamori, Koichi; Ogawa, Hiroki*; Utsugi, Mitsuru*; Yoshimura, Ryokei*; Yamazaki, Kenichi*; Uchida, Kazunari*; Yamaguchi, Masahiro*; Inoue, Tomohiro*; et al.

no journal, , 

10 (Records 1-10 displayed on this page)
  • 1