Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet

Han, J.*; Uchimura, Tomohiro*; Araki, Yasufumi; Yoon, J.-Y.*; Takeuchi, Yutaro*; Yamane, Yuta*; Kanai, Shun*; Ieda, Junichi; Ohno, Hideo*; Fukami, Shunsuke*

Nature Physics, 21 Pages, 2024/04

 Times Cited Count:0 Percentile:0.01

Quantum metric and Berry curvature are two fundamental and distinct factors to describe the geometry of quantum eigenstates. While Berry curvature is known for playing crucial roles in several condensed-matter states, quantum metric, which was predicted to induce new classes of topological phenomena, has rarely been touched, particularly in an ambient circumstance. Using a topological chiral antiferromagnet Mn$$_{3}$$Sn adjacent to Pt, at room temperature, we successfully manipulate the quantum-metric structure of electronic states through its interplay with the nanoscale spin texture at the Mn$$_{3}$$Sn/Pt interface. This is manifested by a time-reversal-odd second-order Hall effect that is robust against extrinsic electron scattering, in contrast to any transport effects from the Berry curvature. We also verify the flexibility of controlling the quantum-metric structure, as the interacting spin texture can be tuned by moderate magnetic fields or by interface engineering via spin-orbit interactions. Our work paves a way for harnessing the quantum-metric structure to unveil emerging topological physics in practical environments and to build applicable nonlinear devices.

Journal Articles

Observation of domain structure in non-collinear antiferromagnetic Mn$$_3$$Sn thin films by magneto-optical Kerr effect

Uchimura, Tomohiro*; Yoon, J.-Y.*; Sato, Yuma*; Takeuchi, Yutaro*; Kanai, Shun*; Takechi, Ryota*; Kishi, Keisuke*; Yamane, Yuta*; DuttaGupta, S.*; Ieda, Junichi; et al.

Applied Physics Letters, 120(17), p.172405_1 - 172405_5, 2022/04

 Times Cited Count:11 Percentile:85.25(Physics, Applied)

2 (Records 1-2 displayed on this page)
  • 1