Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 145

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Behavior of FeCrAl-ODS cladding tube under loss-of-coolant accident conditions

Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki

Journal of Nuclear Materials, 582, p.154467_1 - 154467_12, 2023/08

Journal Articles

Engineering formulation of the irradiation growth behavior of zirconium-based alloys for light water reactors

Kakiuchi, Kazuo; Amaya, Masaki; Udagawa, Yutaka

Journal of Nuclear Materials, 573, p.154110_1 - 154110_7, 2023/01

 Times Cited Count:0 Percentile:0.04(Materials Science, Multidisciplinary)

Journal Articles

Modeling of the P2M past fuel melting experiments with the FEMAXI-8 code

Mohamad, A. B.; Udagawa, Yutaka

Nuclear Technology, 16 Pages, 2023/00

 Times Cited Count:0 Percentile:0.04(Nuclear Science & Technology)

Journal Articles

Hierarchical Bayes model to quantify fracture limit uncertainty of high-burnup advanced fuel cladding tubes under LOCA conditions

Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka

Proceedings of Asian Symposium on Risk Assessment and Management 2022 (ASRAM 2022) (Internet), 11 Pages, 2022/12

Journal Articles

Mechanical property evaluation with nanoindentation method on Zircaloy-4 cladding tube after LOCA-simulated experiment

Kakiuchi, Kazuo; Yamauchi, Akihiro*; Amaya, Masaki; Udagawa, Yutaka; Kitano, Koji*

Proceedings of TopFuel 2022 (Internet), p.409 - 418, 2022/10

JAEA Reports

Mechanical property evaluation of Zircaloy cladding tube after LOCA-simulated experiment using nanoindentation method (Joint research)

Kakiuchi, Kazuo; Udagawa, Yutaka; Yamauchi, Akihiro*

JAEA-Research 2022-001, 21 Pages, 2022/06

JAEA-Research-2022-001.pdf:1.84MB

The primary cause of cladding embrittlement during loss-of-cool ant accident (LOCA) is the increase in oxygen concentration in the metallic layer and associated microstructural change due to oxidation. In the case of cladding high temperature rupture, inner surface oxidation by the steam ingress and the consequent increase in hydrogen partial pressure result in hydrogen absorption (secondary hydriding) localized in the axial direction at the distance apart from the rupture opening as is well known from preceding studies. In order to understand the effect of cladding microstructural changes on mechanical property of a fuel rod under LOCA conditions in a more precise and quantitative manner, the nanoindentation method has been applied to evaluation of mechanical properties of a cladding specimen after a LOCA simulated test; results for two samples taken from the rupture opening part and secondary hydriding part were compared with each other. The fraction of plastic work during the indentation was evaluated from the load-displacement curve in addition to hardness and Young's modulus. The plastic work fraction at the secondary hydriding part was found to be clearly lower than that at the rupture opening part and rather close to that in the ZrO$$_{2}$$ and $$alpha$$-Zr(O) layers, suggesting the significant ductility reduction of the secondary hydriding part despite its relatively low oxygen concentration.

Journal Articles

Irradiation growth behavior and effect of hydrogen absorption of Zr-based cladding alloys for PWR

Kakiuchi, Kazuo; Amaya, Masaki; Udagawa, Yutaka

Annals of Nuclear Energy, 171, p.109004_1 - 109004_9, 2022/06

 Times Cited Count:3 Percentile:80.5(Nuclear Science & Technology)

Journal Articles

Evaluation of anisotropic elastic and plastic parameters of Zircaloy-4 fuel cladding from biaxial stress test data and their application to a fracture mechanics analysis

Li, F.; Mihara, Takeshi; Udagawa, Yutaka

Journal of Nuclear Science and Technology, 10 Pages, 2022/04

 Times Cited Count:6 Percentile:89.98(Nuclear Science & Technology)

Journal Articles

Development of fission gas release model for MOX fuel pellets with treatment of heterogeneous microstructure

Tasaki, Yudai; Udagawa, Yutaka; Amaya, Masaki

Journal of Nuclear Science and Technology, 59(3), p.382 - 394, 2022/03

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Behavior of high-burnup BWR UO$$_{2}$$ fuel with additives under reactivity-initiated accident conditions

Mihara, Takeshi; Kakiuchi, Kazuo; Taniguchi, Yoshinori; Udagawa, Yutaka

Journal of Nuclear Science and Technology, 14 Pages, 2022/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Effects of azimuthal temperature distribution and rod internal gas energy on ballooning deformation and rupture opening formation of a 17 $$times$$ 17 type PWR fuel cladding tube under LOCA-simulated burst conditions

Furumoto, Kenichiro; Udagawa, Yutaka

Journal of Nuclear Science and Technology, 12 Pages, 2022/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Follow-up experimental study on causes of the low-enthalpy failure observed in the reactivity-initiated-accident-simulated test on LWR additive fuels

Mihara, Takeshi; Kakiuchi, Kazuo; Taniguchi, Yoshinori; Udagawa, Yutaka

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

Journal Articles

Study on mechanism and threshold conditions for fuel fragmentation during loss-of-coolant accident conditions

Narukawa, Takafumi; Udagawa, Yutaka

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

Journal Articles

Simulation of the effect of radially oriented hydride precipitates on failure limit of high-burnup BWR fuel cladding under PCMI loading

Taniguchi, Yoshinori; Mihara, Takeshi; Udagawa, Yutaka

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

Journal Articles

Mechanical failure of high-burnup fuel rods with stress-relieved annealed and recrystallized M-MDA cladding under reactivity-initiated accident conditions

Mihara, Takeshi; Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki

Journal of Nuclear Science and Technology, 58(8), p.872 - 885, 2021/08

 Times Cited Count:1 Percentile:25.87(Nuclear Science & Technology)

JAEA Reports

Improvement of intragranular fission gas behavior model for fuel performance code FEMAXI-8

Udagawa, Yutaka; Tasaki, Yudai

JAEA-Data/Code 2021-007, 56 Pages, 2021/07

JAEA-Data-Code-2021-007.pdf:5.05MB

Japan Atomic Energy Agency (JAEA) has released FEMAXI-8 in 2019 as the latest version of the fuel performance code FEMAXI, which has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly normal operation conditions and anticipated transient conditions. This report summarizes a newly developed model to analyze intragranular fission gas behaviors considering size distribution of gas bubbles and their dynamics. While the intragranular fission gas behavior models implemented in the previous FEMAXI versions have supported only treating single bubble size for a given fuel element, the new model supports multiple gas groups according to their size and treats their dynamic behaviors, making the code more versatile. The model was first implemented as a general module that takes arbitrary number of bubble groups and spatial mesh division for a given fuel grain system. An interface module to connect the model to FEMAXI-8 was then developed so that it works as a 2 bubble groups model, which is the minimum configuration of the multi-grouped model to be operated with FEMAXI-8 at the minimum calculation cost. FEMAXI-8 with the new intragranular model was subjected to a systematic validation calculation against 144 irradiation test cases and recommended values for model parameters were determined so that the code makes reasonable predictions in terms of fuel center temperature, fission gas release, etc. under steady-state and power ramp conditions.

Journal Articles

Fission gas release from irradiated mixed-oxide fuel pellet during simulated reactivity-initiated accident conditions; Results of BZ-3 and BZ-4 tests

Kakiuchi, Kazuo; Udagawa, Yutaka; Amaya, Masaki

Annals of Nuclear Energy, 155, p.108171_1 - 108171_11, 2021/06

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Development and release of fuel performance code FEMAXI-8

Udagawa, Yutaka

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(10), p.555 - 559, 2020/10

no abstracts in English

Journal Articles

Transient response of LWR fuels (RIA)

Udagawa, Yutaka; Fuketa, Toyoshi*

Comprehensive Nuclear Materials, 2nd Edition, Vol.2, p.322 - 338, 2020/08

Journal Articles

Effects of pre-crack depth and hydrogen absorption on the failure strain of Zircaloy-4 cladding tubes under biaxial strain conditions

Li, F.; Mihara, Takeshi; Udagawa, Yutaka; Amaya, Masaki

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

145 (Records 1-20 displayed on this page)