Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 26

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mechanisms responsible for adsorption of molybdate ions on alumina for the production of medical radioisotopes

Fujita, Yoshitaka; Niizeki, Tomotake*; Fukumitsu, Nobuyoshi*; Ariga, Katsuhiko*; Yamauchi, Yusuke*; Malgras, V.*; Kaneti, Y. V.*; Liu, C.-H.*; Hatano, Kentaro*; Suematsu, Hisayuki*; et al.

Bulletin of the Chemical Society of Japan, 95(1), p.129 - 137, 2022/01

 Times Cited Count:8 Percentile:76.16(Chemistry, Multidisciplinary)

In this work, the mechanisms responsible for the adsorption of molybdate ions on alumina are investigated using in-depth surface analyses carried out on alumina specimens immersed in solutions containing different molybdate ions at different pH values. The obtained results reveal that when alumina is immersed in an acidic solution containing molybdate ions, the hydroxyl groups present on the surface are removed to generate positively charged sites, and molybdate ions (MoO$$_{4}$$$$^{2-}$$ or AlMo$$_{6}$$O$$_{24}$$H$$_{6}$$$$^{3-}$$) are adsorbed by electrostatic interaction. Alumina dissolves slightly in an acidic solution to form AlMo$$_{6}$$O$$_{24}$$H$$_{6}$$$$^{3-}$$, which is more easily desorbed than MoO$$_{4}$$$$^{2-}$$. Furthermore, the enhancement in the Mo adsorption or desorption property may be achieved by enriching the surface of the alumina adsorbent with many -OH groups and optimizing Mo solution to adsorb molybdate ions on alumina as MoO$$_{4}$$$$^{2-}$$ ions. These findings will assist researchers in engineering more efficient and stable alumina-based adsorbents for molybdenum adsorption used in medical radioisotope ($$^{99}$$Mo/$$^{99m}$$Tc) generators.

Journal Articles

Dynamic properties on $$^{99}$$Mo adsorption and $$^{rm 99m}$$Tc elution with alumina columns

Fujita, Yoshitaka; Seki, Misaki; Sano, Tadafumi*; Fujihara, Yasuyuki*; Suzuki, Tatsuya*; Yoshinaga, Hisao*; Hori, Junichi*; Suematsu, Hisayuki*; Tsuchiya, Kunihiko

Journal of Physics; Conference Series, 2155, p.012018_1 - 012018_6, 2022/01

Technetium-99m ($$^{rm 99m}$$Tc), the daughter nuclide of Molybdenum-99 ($$^{99}$$Mo), is the most commonly used radioisotope in radiopharmaceuticals. The research and development (R&D) for the production of $$^{99}$$Mo by the neutron activation method ((n, $$gamma$$) method) has been carried out from viewpoints of no-proliferation and nuclear security, etc. Since the specific activity of $$^{99}$$Mo produced by the (n, $$gamma$$) method is extremely low, developing Al$$_{2}$$O$$_{3}$$ with a large Mo adsorption capacity is necessary to adapt (n, $$gamma$$)$$^{99}$$Mo to the generator. In this study, three kinds of Al$$_{2}$$O$$_{3}$$ specimens with different raw materials were prepared and compared their adaptability to generators by static and dynamic adsorption. MoO$$_{3}$$ pellet pieces (1.5g) were irradiated with 5 MW for 20 min in the Kyoto University Research Reactor (KUR). Irradiated MoO$$_{3}$$ pellet pieces were dissolved in 6M-NaOH aq. In dynamic adsorption, 1 g of Al$$_{2}$$O$$_{3}$$ was filled into a PFA tube ($$phi$$1.59 mm). The $$^{99}$$Mo adsorption capacity of Al$$_{2}$$O$$_{3}$$ specimens under dynamic condition was slightly reduced compared to that under static condition. The $$^{rm 99m}$$Tc elution rate was about 100% at 1.5 mL of milking in dynamic adsorption, while it was around 56-87% in static adsorption. The $$^{99}$$Mo/$$^{rm 99m}$$Tc ratio of dynamic condition was greatly reduced compared to that of static condition. Therefore, the $$^{rm 99m}$$Tc elution property is greatly affected by the method of adsorbing Mo, e.g., the column shape, the linear flow rate, etc.

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{rm 99m}$$Tc generator by (n, $$gamma$$) method, 3

Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Daigo, Fumihisa; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.

KURNS Progress Report 2020, P. 136, 2021/08

no abstracts in English

Journal Articles

Two-step-pressurization method in pulsed electric current sintering of MoO$$_{3}$$ for production of $$^{99m}$$Tc radioactive isotope

Suematsu, Hisayuki*; Sato, Soma*; Nakayama, Tadachika*; Suzuki, Tatsuya*; Niihara, Koichi*; Nanko, Makoto*; Tsuchiya, Kunihiko

Journal of Asian Ceramic Societies (Internet), 8(4), p.1154 - 1161, 2020/12

 Times Cited Count:3 Percentile:17(Materials Science, Ceramics)

Pulsed electric current sintering of molybdenum trioxide (MoO$$_{3}$$) was carried out by one- and two-step pressuring methods for fabrication of irradiation target using production of $$^{99}$$Mo and $$^{rm 99m}$$Tc nuclear medicine. At 550$$^{circ}$$C by the two-step pressurizing method, a relative density of 93.1% was obtained while, by the one-step pressurization method, the relative density was 76.9%. Direct sample temperature measurements were conducted by inserting a thermocouple in a punch. By the two-step pressurizing method, the sample temperature was higher than that by the one-step pressurizing method even almost the same die temperature. From voltage and current waveforms, it was thought that the conductivity of the sample increased by the two-step pressurizing method to increase the sample temperature and the relative density. The two-step pressurization method enables us to prepare dense targets at a low temperature from recycled and coarse-grained $$^{98}$$Mo enriched MoO$$_{3}$$ powder.

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{rm 99m}$$Tc generator by (n,$$gamma$$) method, 2

Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kato, Yoshiaki; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.

KURNS Progress Report 2019, P. 157, 2020/08

no abstracts in English

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{rm 99m}$$Tc generator by (n,$$gamma$$) method

Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

KURNS Progress Report 2018, P. 155, 2019/08

no abstracts in English

Journal Articles

Experience on Pu-U mixed oxide fuel development in Japan

Uematsu, Kunihiko; Honda, Yutaka*; Yumoto, Ryozo

Nihon Genshiryoku Gakkai-Shi, 24(6), p.420 - 428, 1982/06

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

JAEA Reports

None

Uematsu, Kunihiko

PNC TN141 82-02, 12 Pages, 1982/04

PNC-TN141-82-02.pdf:0.36MB

JAEA Reports

None

Uematsu, Kunihiko; *

PNC TN241 77-29, 182 Pages, 1977/10

PNC-TN241-77-29.pdf:5.83MB

None

JAEA Reports

None

Uematsu, Kunihiko; Koizumi, Masumichi; Nagai, Shuichiro; Fukuda, Shoji*; *; *; Furuya, Hirotaka

PNC TN841 76-16, , 1976/04

PNC-TN841-76-16.pdf:1.63MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko; *

PNC TN241 75-03, 75 Pages, 1975/01

PNC-TN241-75-03.pdf:2.49MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko; *; Kawata, Tomio*

PNC TN241 74-01, 90 Pages, 1974/01

PNC-TN241-74-01.pdf:3.81MB

no abstracts in English

JAEA Reports

JAEA Reports

None

Uematsu, Kunihiko; *; *; Komatsu, Junji*

PNC TN241 71-39, 107 Pages, 1971/09

PNC-TN241-71-39.pdf:4.3MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko; *; *; Komatsu, Junji*

PNC TN241 71-38, 116 Pages, 1971/09

PNC-TN241-71-38.pdf:5.13MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko

PNC TN241 70-52, 145 Pages, 1970/11

PNC-TN241-70-52.pdf:6.84MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko

PNC TN241 70-45, 26 Pages, 1970/10

PNC-TN241-70-45.pdf:1.31MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko; *

PNC TN241 70-43, 95 Pages, 1970/10

PNC-TN241-70-43.pdf:8.31MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko

PNC TN241 70-29, 31 Pages, 1970/06

PNC-TN241-70-29.pdf:2.88MB

no abstracts in English

JAEA Reports

None

Uematsu, Kunihiko

PNC TN241 69-14, 85 Pages, 1969/07

PNC-TN241-69-14.pdf:7.15MB

no abstracts in English

26 (Records 1-20 displayed on this page)