Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hosoi, Takuji*; Kirino, Takashi*; Uenishi, Yusuke*; Ikeguchi, Daisuke*; Chanthaphan, A.*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; et al.
Workshop digest of 2012 Asia-Pacific Workshop on Fundamentals and Applications of Advanced Semiconductor Devices (AWAD 2012), p.22 - 25, 2012/06
Watanabe, Heiji*; Hosoi, Takuji*; Kirino, Takashi*; Uenishi, Yusuke*; Chanthaphan, A.*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; et al.
Materials Science Forum, 717-720, p.697 - 702, 2012/05
Times Cited Count:2 Percentile:72.03(Materials Science, Multidisciplinary)Hosoi, Takuji*; Kirino, Takashi*; Chanthaphan, A.*; Uenishi, Yusuke*; Ikeguchi, Daisuke*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; et al.
Materials Science Forum, 717-720, p.721 - 724, 2012/05
Times Cited Count:5 Percentile:90.61(Materials Science, Multidisciplinary)Watanabe, Heiji*; Hosoi, Takuji*; Kirino, Takashi*; Kagei, Yusuke*; Uenishi, Yusuke*; Chanthaphan, A.*; Yoshigoe, Akitaka; Teraoka, Yuden; Shimura, Takayoshi*
Applied Physics Letters, 99(2), p.021907_1 - 021907_3, 2011/07
Times Cited Count:123 Percentile:95.50(Physics, Applied)Watanabe, Heiji*; Kirino, Takashi*; Uenishi, Yusuke*; Chanthaphan, A.*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; Hosoi, Takuji*; et al.
ECS Transactions, 35(2), p.265 - 274, 2011/05
Times Cited Count:8 Percentile:92.63(Electrochemistry)Watanabe, Heiji*; Hosoi, Takuji*; Kirino, Takashi*; Uenishi, Yusuke*; Chanthaphan, A.*; Ikeguchi, Daisuke*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; et al.
ECS Transactions, 41(3), p.77 - 90, 2011/00
Times Cited Count:5 Percentile:89.76(Electrochemistry)Kutsuki, Katsuhiro*; Okamoto, Gaku*; Hideshima, Iori*; Uenishi, Yusuke*; Kirino, Takashi*; Harries, J.; Yoshigoe, Akitaka; Teraoka, Yuden; Hosoi, Takuji*; Shimura, Takayoshi*; et al.
no journal, ,
Direct deposition of ZrO films on Ge substrates and subsequent thermal oxidation results in an equivalent oxide thickness (EOT) of above 2 nm while obtaining good interface quality due to interfacial GeO
formation. In this work, we proposed the use of Ge
N
interlayer formed by high-density plasma nitridation for further EOT scaling because of its high resistance to oxidation and superior thermal stability. The structural modification of ZrO
/Ge
N
/Ge after oxidation was characterized by synchrotron-radiation X-ray photoelectron spectroscopy at BL23SU in SPring-8. Ge 3d core-level spectra revealed that the Ge
N
interlayer was slightly oxidized after thermal oxidation at 823 K, but N 1s spectra remained almost unchanged. This indicates that the Ge
N
interlayer is effective in suppressing interfacial oxidation, thus obtaining an EOT of 1.8 nm.