Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 8 Pages, 2022/10
Uesawa, Shinichiro; Yoshida, Hiroyuki
Konsoryu Shimpojiumu 2022 Koen Rombunshu (Internet), 2 Pages, 2022/08
no abstracts in English
Koyama, Shinichi; Nakagiri, Toshio; Osaka, Masahiko; Yoshida, Hiroyuki; Kurata, Masaki; Ikeuchi, Hirotomo; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Takano, Masahide; et al.
Hairo, Osensui Taisaku jigyo jimukyoku Homu Peji (Internet), 144 Pages, 2021/08
JAEA performed the subsidy program for the "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy and Thermal Behavior Estimation of Fuel Debris))" in 2020JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning and Contaminated Water Management.
Yoshida, Hiroyuki; Uesawa, Shinichiro
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08
Onodera, Naoyuki; Idomura, Yasuhiro; Uesawa, Shinichiro; Yamashita, Susumu; Yoshida, Hiroyuki
Mechanical Engineering Journal (Internet), 7(3), p.19-00531_1 - 19-00531_10, 2020/06
A dry method is one of practical methods for decommissioning the TEPCO's Fukushima Daiichi Nuclear Power Station. Japan Atomic Energy Agency (JAEA) has been evaluating the air cooling performance of the fuel debris by using the JUPITER code based on an incompressible fluid model and the CityLBM code based on the lattice Boltzmann method (LBM). However, these codes were based on a uniform Cartesian grid system, and required large computational time and cost to capture complicated debris structures. We develop an adaptive mesh refinement (AMR) version of the CityLBM code on GPU based supercomputers and apply it to thermal-hydrodynamics problems. The proposed method is validated against free convective heat transfer experiments at JAEA. It is also shown that the AMR based CityLBM code on 4 NVIDIA TESLA V100GPUs gives 6.7x speedup of the time to solution compared with the JUPITER code on 36 Intel Xeon E5-2680v3 CPUs.
Uesawa, Shinichiro; Yoshida, Hiroyuki
Mechanical Engineering Journal (Internet), 7(3), p.19-00539_1 - 19-00539_9, 2020/06
Koizumi, Yasuo*; Uesawa, Shinichiro; Ono, Ayako; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Nihon Kikai Gakkai Netsu Kogaku Konfarensu 2019 Koen Rombunshu (USB Flash Drive), 1 Pages, 2019/10
no abstracts in English
Horiguchi, Naoki; Miyahara, Naoya; Uesawa, Shinichiro; Yoshida, Hiroyuki; Osaka, Masahiko
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
For source term evaluation from reactor buildings (RBs) in LWR severe accidents, we have launched to develop an evaluation method of FP aerosol particle deposition onto surfaces of internal structures in an RB based on computational fluid dynamics (CFD). This paper describes development of a CFD simulation tool as the base part of the evaluation method. A preliminary simulation for a representative RB under a representative flow condition was conducted to confirm the tool performance by roughly grasping the deposition behaviors of FP aerosol particle and decontamination factor (DF) in the RB. Calculation results showed that most of aerosol particles were deposited along with gas flow formed by the internal structures in the RB, demonstrating the advantageous feature of the present CFD tool. The DFs from 4 to 14 were obtained with increase of the particle diameters from 0.1 to 10 m as expected in terms of the particle movement equation.
Onodera, Naoyuki; Idomura, Yasuhiro; Kawamura, Takuma; Uesawa, Shinichiro; Yamashita, Susumu; Yoshida, Hiroyuki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05
A dry method is one of practical methods for decommissioning the TEPCO's Fukushima Daiichi Nuclear Power Station. Japan Atomic Energy Agency (JAEA) has been evaluating the air cooling performance by using the JUPITER code. However, the JUPITER code requires a large computational cost to capture debris' structures. To accelerate such CFD analyses, we use the CityLBM code, which is based on the lattice Boltzmann method (LBM) and is highly optimized for GPUs. The CityLBM code is validated against free convective heat transfer experiments at JAEA, and the similar accuracy as the JUPITER code is confirmed regarding the prediction capability of heat transfer and the resulting temperature distributions. It is also shown that the elapse time of a CityLBM simulation on GPUs is reduced to 1/6 compared with that of the corresponding JUPITER simulation on CPUs with the same number of GPUs and CPUs. The results show that the LBM is promising for accelerating thermal convective simulations.
Uesawa, Shinichiro; Miyahara, Naoya; Horiguchi, Naoki; Yoshida, Hiroyuki; Osaka, Masahiko
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05
Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11
Yoshida, Hiroyuki; Uesawa, Shinichiro; Horiguchi, Naoki; Miyahara, Naoya; Ose, Yasuo*
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11
Nagatake, Taku; Shibata, Mitsuhiko; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 3 Pages, 2018/11
In the Fukushima Daiichi Nuclear Power Plant accident, reactor cores were cooled by natural circulation due to pump trip. To investigate the accident progress of the Fukushima Daiichi Nuclear Power Plant, it is important to understand the thermal hydraulic behavior in reactor cores including fuel bundles. Flow rate inside cores was relatively low in the natural circulation conditions, then, thermal-hydraulic behavior in the fuel bundles was different from that in the normal operating conditions. To evaluate thermal hydraulic behavior under the accidental conditions, we are developing the numerical simulation codes named TPFIT and ACE3D. These codes are based on two-phase computational fluid dynamics and can simulate the two-phase flow inside fuel bundles including low flow rate condition. Before applying these codes to the thermal-hydraulic behavior, the applicability of these codes must be confirmed. Then, in this study, in order to obtain a validation data for TPFIT and ACE3D code, thermal hydraulic experiment was performed by using test section with a simulated fuel bundle with 44 unheated rods. In this simulated fuel bundle, there were wire mesh sensors, and void fraction distribution data inside the simulated fuel bundle under high pressure condition (max. 2.6 MPa) was obtained. The one of the advantage of wire mesh sensor is that a void fraction distribution of cross section at the same time can be measured. In this paper, void fraction distribution of two-phase flow in a simulated fuel bundle under high pressure condition are reported.
Uesawa, Shinichiro; Ono, Ayako; Koizumi, Yasuo; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Nihon Kikai Gakkai Netsu Kogaku Konfarensu 2018 Koen Rombunshu (USB Flash Drive), 6 Pages, 2018/10
no abstracts in English
Uesawa, Shinichiro; Horiguchi, Naoki; Suzuki, Takayuki*; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 11 Pages, 2018/10
Uesawa, Shinichiro; Suzuki, Takayuki*; Yoshida, Hiroyuki
Konsoryu Shimpojiumu 2018 Koen Rombunshu (Internet), 2 Pages, 2018/08
no abstracts in English
Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Mechanical Engineering Journal (Internet), 5(4), p.18-00115_1 - 18-00115_13, 2018/08
Yoshida, Hiroyuki; Uesawa, Shinichiro; Horiguchi, Naoki; Miyahara, Naoya; Ose, Yasuo*
Dai-23-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 5 Pages, 2018/06
no abstracts in English
Uesawa, Shinichiro; Horiguchi, Naoki; Miyahara, Naoya; Yoshida, Hiroyuki
Dai-23-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 5 Pages, 2018/06
no abstracts in English
Uesawa, Shinichiro; Ono, Ayako; Koizumi, Yasuo; Shibata, Mitsuhiko; Yoshida, Hiroyuki
Dai-55-Kai Nihon Dennetsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 8 Pages, 2018/05
no abstracts in English