Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Decommissioning program and future plan for research hot laboratory

Umino, Akira; Saito, Mitsuo; Kanazawa, Hiroyuki; Koya, Toshio; Okamoto, Hisato; Sekino, Hajime*; Nishino, Yasuharu

Dekomisshoningu Giho, (32), p.2 - 12, 2005/09

The Research Hot Laboratory (RHL) in Japan Atomic Research Institute (JAERI) was constructed in 1961, as the first one in JAPAN, to perform the examinations of irradiated fuels and materials. RHL with two floors and a basement consists of 10 heavy concrete cells, and 38 lead cells (20 lead cells at present). The RHL had been contributed to research program in JAERI. However, RHL is the one of target 'A middle-range decommissioning plan for the facility in Tokai Research Establishment' as the rationalization program for decrepit facilities in JAERI. Therefore, all PIEs had been finished in March 2003 and the dismantling works of hot cells have been started. The 18 lead cells had been dismantled. The examinations performed in RHL will be succeeded to the RFEF and the WASTEF. The partial area of RHL facility will be used for the temporary storage of un-irradiated fuel samples used for our previous research works and radioactive device generated in proton accelerator facility (called J-PARC).

JAEA Reports

JOYO MK-III Heat Transport System Renovation Operation; Primary Heat Transport Mechanical System (IHXs (Intermediate Heat Exchangers))

Oshima, Jun; Ashida, Takashi; Isozaki, Kazunori; Sumino, Kozo; Yamaguchi, Akira; Sakaba, Hideo; Ozawa, Kenji; Tomita, Naoki

JNC TN9410 2004-011, 279 Pages, 2004/04

JNC-TN9410-2004-011.pdf:68.76MB

The MK-III project to improve the irradiation capability of the experimental fast reactor JOYO have been carried out since 1987.The increase of fast neutron flux and the enlargement of irradiation field increase the reactor thermal power from 100MWt to 140MWt. To accommodate the increased thermal power,the IHXs and the IHX connecting piping were replaced. The IHXs were replaced with securing cooling system boundary in high dose rate surroundings and very limited operation space of the radiation controlled area in the containment vessel. Primary sodium contains radioactive 22Na,24Na and radioactive CPs such as 60Co and 54Mn,and this sodium adhered to the inner surface of IHXs and pipe. Therefore, the renovation procedure and method were carefully examined based on the JOYO operation and maintenance experiences and research and development results on the sodium handling technique.The major results obtained in the primary heat transport mechanical system (IHXs) renovation operation were shown as follows;

2 (Records 1-2 displayed on this page)
  • 1