Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wada, Yuki*; Enoto, Teruaki*; Kubo, Mamoru*; Nakazawa, Kazuhiro*; Shinoda, Taro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Yuasa, Takayuki*; Ushio, Tomoo*; Sato, Yosuke*; et al.
Geophysical Research Letters, 48(7), 11 Pages, 2021/04
Times Cited Count:15 Percentile:93.63(Geosciences, Multidisciplinary)During three winter seasons from November 2016 to March 2019, 11 gamma-ray glows were detected at a single observation site of our ground-based gamma-ray monitoring network in Kanazawa, Japan. These events are analyzed with observations of an X-band radar network, a ceilometer, a disdrometer, and a weather monitor. All the detected glows were connected to convective high-reflectivity regions of more than 35 dBZ, developed up to an altitude of 2 km. They were also accompanied by heavy precipitation of graupels. Therefore, graupels in the lower layer of thunderclouds that correspond to high-reflectivity regions can form strong electric fields producing gamma-ray glows. Also, these events are compared with a limited sample of nondetection cases, but no significant differences in meteorological conditions were found between detection and nondetection cases in the present study.
Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Sato, Mitsuteru*; Ushio, Tomoo*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Yonetoku, Daisuke*; Sawano, Tatsuya*; et al.
Journal of Geophysical Research; Atmospheres, 125(4), p.e2019JD031730_1 - e2019JD031730_11, 2020/02
Times Cited Count:19 Percentile:85.61(Meteorology & Atmospheric Sciences)Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakazawa, Kazuhiro*; Morimoto, Takeshi*; Sato, Mitsuteru*; Matsumoto, Takahiro*; Yonetoku, Daisuke*; et al.
Communications Physics (Internet), 2(1), p.67_1 - 67_9, 2019/06
Times Cited Count:35 Percentile:91.67(Physics, Multidisciplinary)Torii, Tatsuo; Kido, Hiroko*; Yokoyama, Naomi*; Kurosawa, Naohiro*; Akita, Manabu*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Ushio, Tomoo*; Kawasaki, Zenichiro*
no journal, ,
To evaluate the influence to which radon and its decay products cause the thunderstorm activity, a large area diffusion model of radon is constructed for an Australian northern part that is one of the most frequent region of the thunderstorm in the world. The advection and diffusion analysis of radon in the atmosphere was carried out, and it compared it with the measured result of the radon concentration in the region from the dry season to the rainy season.