Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 196

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Brightening triplet excitons enable high-performance white-light emission in organic small molecules via integrating n-$$pi^*/pi$$-$$pi^*$$ transitions

Yang, Q.*; Yang, X.*; Wang, Y.*; Fei, Y.*; Li, F.*; Zheng, H.*; Li, K.*; Han, Y.*; Hattori, Takanori; Zhu, P.*; et al.

Nature Communications (Internet), 15, p.7778_1 - 7778_9, 2024/09

Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via hydrogen bonding cooperativity effect to realize the mixture of n-$$pi^*/pi$$-$$pi^*$$ transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecule, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.

Journal Articles

Anomalous dislocation response to deformation strain in CrFeCoNiPd high-entropy alloys with nanoscale chemical fluctuations

Ying, H.*; Yang, X.*; He, H.*; Yan, A.*; An, K.*; Ke, Y.*; Wu, Z.*; Tang, S.*; Zhang, Z.*; Dong, H.*; et al.

Scripta Materialia, 250, p.116181_1 - 116181_7, 2024/09

Journal Articles

Progress of material characterization techniques based on neutron Bragg-edge transmission imaging

Wang, Y. W.*; Xu, P. G.; Su, Y. H.; Ma, Y. L.*; Wang, H. H.*

Physics Examination and Testing, 42(4), p.32 - 41, 2024/08

Journal Articles

Microscopic insights of the extraordinary work-hardening due to phase transformation

Ma, Y.*; Naeem, M.*; Zhu, L.*; He, H.*; Sun, X.*; Yang, Z.*; He, F.*; Harjo, S.; Kawasaki, Takuro; Wang, X.-L.*

Acta Materialia, 270, p.119822_1 - 119822_13, 2024/05

Journal Articles

Archie's cementation factors for natural rocks; Measurements and insights from diagenetic perspectives

Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; Tachi, Yukio

Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05

Journal Articles

Crystal-liquid duality driven ultralow two-channel thermal conductivity in $$alpha$$-MgAgSb

Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; Kofu, Maiko; Nakajima, Kenji; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.

Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03

 Times Cited Count:0 Percentile:0.00(Physics, Applied)

Journal Articles

Development of wide range photon detection system for muonic X-ray spectroscopy

Mizuno, Rurie*; Niikura, Megumi*; Saito, Takeshi*; Matsuzaki, Teiichiro*; Sakurai, Hiroyoshi*; Amato, A.*; Asari, Shunsuke*; Biswas, S.*; Chiu, I.-H.; Gianluca, J.*; et al.

Nuclear Instruments and Methods in Physics Research A, 1060, p.169029_1 - 169029_14, 2024/03

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

ALTEMIS: Using integrated hydrology and reactive transport modeling to support resilience at the Savannah River Site

Xu, Z.*; Litzinger, A.*; Sakuma, Kazuyuki; Arora, B.*; Hazenberg, P.*; Wang, L.*; Gonzalez Raymat, H.*; Fabricatore, E.*; Wainwright, Haruko*; Eddy-Dilek, C.*

Proceedings of Waste Management Symposia 2024 (WM2024) (Internet), 14 Pages, 2024/03

Journal Articles

Microscopic origin of the spin-reorientation transition in the kagome topological magnet TbMn$$_{6}$$Sn$$_{6}$$

Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Deng, G.*; et al.

Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Journal Articles

Petrophysical properties of representative geological rocks encountered in carbon storage and utilization

Hu, Q.*; Wang, Q. M.*; Zhang, T.*; Zhao, C.*; Iltaf, K. H.*; Liu, S. Q.*; Fukatsu, Yuta

Energy Reports (Internet), 9, p.3661 - 3682, 2023/12

 Times Cited Count:4 Percentile:78.27(Energy & Fuels)

Journal Articles

Cryogenic impact fracture behavior of a high-Mn austenitic steel using electron backscatter diffraction and neutron Bragg-edge transmission imaging

Wang, Y. W.*; Wang, H. H.*; Su, Y. H.; Xu, P. G.; Shinohara, Takenao

Materials Science & Engineering A, 887, p.145768_1 - 145768_13, 2023/11

 Times Cited Count:1 Percentile:44.33(Nanoscience & Nanotechnology)

Journal Articles

Development of scalable deconvolution methods for determining secondary target neutron yields from dual-thick-target cosmic-ray ion accelerator experiments

Ratliff, H.; McGirl, N. A.*; Beach, M. R.*; Castellanos, L. A.*; Clowdsley, M. S.*; Heilbronn, L. H.*; LaTessa, C.*; Norbury, J. W.*; Rusek, A.*; Sivertz, M.*; et al.

Nuclear Instruments and Methods in Physics Research B, 544, p.165121_1 - 165121_15, 2023/11

Journal Articles

Validation of the $$^{10}$$Be ground-state molecular structure using $$^{10}$$Be($$p,palpha$$)$$^{6}$$He triple differential reaction cross-section measurements

Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi$'e$, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.

Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11

The cluster structure of the neutron-rich isotope $$^{10}$$Be has been probed via the ($$p,palpha$$) reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-R$"o$pke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the $$^{10}$$Be ground-state as a rather compact nuclear molecule.

Journal Articles

PANDORA Project for the study of photonuclear reactions below $$A=60$$

Tamii, Atsushi*; Pellegri, L.*; S$"o$derstr$"o$m, P.-A.*; Allard, D.*; Goriely, S.*; Inakura, Tsunenori*; Khan, E.*; Kido, Eiji*; Kimura, Masaaki*; Litvinova, E.*; et al.

European Physical Journal A, 59(9), p.208_1 - 208_21, 2023/09

 Times Cited Count:2 Percentile:79.22(Physics, Nuclear)

no abstracts in English

Journal Articles

Double-differential primary target neutron yields from dual-thick-target proton and heavy ion accelerator experiments

Ratliff, H.; McGirl, N. A.*; Beach, M. R.*; Castellanos, L. A.*; Clowdsley, M. S.*; Heilbronn, L. H.*; LaTessa, C.*; Norbury, J. W.*; Rusek, A.*; Sivertz, M.*; et al.

Nuclear Instruments and Methods in Physics Research B, 542, p.87 - 94, 2023/09

 Times Cited Count:1 Percentile:63.33(Instruments & Instrumentation)

Journal Articles

First observation of $$^{28}$$O

Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.

Nature, 620(7976), p.965 - 970, 2023/08

 Times Cited Count:6 Percentile:93.49(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Intruder configurations in $$^{29}$$Ne at the transition into the island of inversion; Detailed structure study of $$^{28}$$Ne

Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.

Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08

 Times Cited Count:2 Percentile:79.22(Astronomy & Astrophysics)

Detailed $$gamma$$-ray spectroscopy of the exotic neon isotope $$^{28}$$Ne has been performed using the one-neutron removal reaction from $$^{29}$$Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for $$^{28}$$Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.

Journal Articles

Level structures of $$^{56,58}$$Ca cast doubt on a doubly magic $$^{60}$$Ca

Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.

Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08

 Times Cited Count:1 Percentile:59.27(Astronomy & Astrophysics)

Gamma decays were observed in $$^{56}$$Ca and $$^{58}$$Ca following quasi-free one-proton knockout reactions from $$^{57,59}$$Sc. For $$^{56}$$Ca, a $$gamma$$ ray transition was measured to be 1456(12) keV, while for $$^{58}$$Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the $$2^{+}_{1} rightarrow 0^{+}_{gs}$$ decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for $$2^{+}_{1}$$ level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the $$0_{f5/2}$$ and $$0_{g9/2}$$ orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic $$^{60}$$Ca and potentially drives the dripline of Ca isotopes to $$^{70}$$Ca or even beyond.

Journal Articles

High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy

Kwon, H.*; Sathiyamoorthi, P.*; Gangaraju, M. K.*; Zargaran, A.*; Wang, J.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Lee, B.-J.*; Kim, H. S.*

Acta Materialia, 248, p.118810_1 - 118810_12, 2023/04

 Times Cited Count:15 Percentile:99.09(Materials Science, Multidisciplinary)

Journal Articles

Pressure-modulated magnetism and negative thermal expansion in the Ho$$_2$$Fe$$_{17}$$ intermetallic compound

Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.

Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04

 Times Cited Count:1 Percentile:40.78(Chemistry, Physical)

Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in Ho$$_2$$Fe$$_{17}$$ on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.

196 (Records 1-20 displayed on this page)