Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Mao, W.*; Gong, W.; Kawasaki, Takuro; Gao, S.*; Ito, Tatsuya; Yamashita, Takayuki*; Harjo, S.; Zhao, L.*; Wang, Q.*
Scripta Materialia, 264, p.116726_1 - 116726_6, 2025/07
Times Cited Count:0Wang, Y.*; Gong, W.; Harjo, S.; 7 of others*
Acta Materialia, 288, p.120840_1 - 120840_14, 2025/04
Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)Naeem, M.*; Rehman, A. U.*; Romero Resendiz, L.*; Salamci, E.*; Aydin, H.*; Ansari, P.*; Harjo, S.; Gong, W.; Wang, X.-L.*; 3 of others*
Communications Materials (Internet), 6, p.65_1 - 65_13, 2025/04
Naeem, M.*; Ma, Y.*; Tian, J.*; Kong, H.*; Romero-Resendiz, L.*; Fan, Z.*; Jiang, F.*; Gong, W.; Harjo, S.; Wu, Z.*; et al.
Materials Science & Engineering A, 924, p.147819_1 - 147819_10, 2025/02
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Xu, J.*; Lang, P.*; Liang, S.*; Zhang, J.*; Fei, Y.*; Wang, Y.*; Gao, D.*; Hattori, Takanori; Abe, Jun*; Dong, X.*; et al.
Journal of Physical Chemistry Letters (Internet), p.2445 - 2451, 2025/00
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)The Alder-ene reaction is a chemical reaction between an alkene with an allylic hydrogen, and it provides an efficient method to construct the C-C bond. Traditionally, this reaction requires catalysts, high temperatures, or photocatalysis. In this study, we reported a high-pressure-induced solid-state Alder-ene reaction of 1-hexene at room temperature without a catalyst. 1-Hexene crystallizes at 4.3 GPa and polymerizes at 18 GPa, forming olefins. By exploring gas chromatography-mass spectrometry, we discovered that 1-hexene generates dimeric products through the Alder-ene reaction under high pressures. The in situ neutron diffraction shows that the reaction process did not obey the topochemical rule. A six-membered ring transition state including one C-H bond and two alkene
bonds was evidenced by the theoretical calculation, whose energy obviously decreased when compressed to 20 GPa. Our work offers a novel and promising method to realize the Alder-ene reaction at room temperature without a catalyst, expanding the application of this important reaction.
Naeem, M.*; Ma, Y.*; Knowles, A. J.*; Gong, W.; Harjo, S.; Wang, X.-L.*; Romero Resendiz, L.*; 6 of others*
Materials Science & Engineering A, 916, p.147374_1 - 147374_8, 2024/11
Times Cited Count:2 Percentile:63.37(Nanoscience & Nanotechnology)Yang, Q.*; Yang, X.*; Wang, Y.*; Fei, Y.*; Li, F.*; Zheng, H.*; Li, K.*; Han, Y.*; Hattori, Takanori; Zhu, P.*; et al.
Nature Communications (Internet), 15, p.7778_1 - 7778_9, 2024/09
Times Cited Count:9 Percentile:88.46(Multidisciplinary Sciences)Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via hydrogen bonding cooperativity effect to realize the mixture of n--
transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecule, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.
Zhu, L.*; He, H.*; Naeem, M.*; Sun, X.*; Qi, J.*; Liu, P.*; Harjo, S.; Nakajima, Kenji; Li, B.*; Wang, X.-L.*
Physical Review Letters, 133(12), p.126701_1 - 126701_6, 2024/09
Times Cited Count:1 Percentile:48.32(Physics, Multidisciplinary)Ying, H.*; Yang, X.*; He, H.*; Yan, A.*; An, K.*; Ke, Y.*; Wu, Z.*; Tang, S.*; Zhang, Z.*; Dong, H.*; et al.
Scripta Materialia, 250, p.116181_1 - 116181_7, 2024/09
Times Cited Count:1 Percentile:41.92(Nanoscience & Nanotechnology)Wang, S.*; Wang, J.*; Zhang, S.*; Wei, D.*; Chen, Y.*; Rong, X.*; Gong, W.; Harjo, S.; Liu, X.*; Jiao, Z.*; et al.
Journal of Materials Science & Technology, 185, p.245 - 258, 2024/06
Times Cited Count:15 Percentile:97.90(Materials Science, Multidisciplinary)Ma, Y.*; Naeem, M.*; Zhu, L.*; He, H.*; Sun, X.*; Yang, Z.*; He, F.*; Harjo, S.; Kawasaki, Takuro; Wang, X.-L.*
Acta Materialia, 270, p.119822_1 - 119822_13, 2024/05
Times Cited Count:9 Percentile:95.42(Materials Science, Multidisciplinary)Tsuchiya, Harufumi; Hibino, Kinya*; Kawata, Kazumasa*; Onishi, Munehiro*; Takita, Masato*; Munakata, Kazuoki*; Kato, Chihiro*; Shimoda, Susumu*; Shi, Q.*; Wang, S.*; et al.
Progress of Earth and Planetary Science (Internet), 11, p.26_1 - 26_14, 2024/05
Times Cited Count:0 Percentile:0.00(Geosciences, Multidisciplinary)Mizuno, Rurie*; Niikura, Megumi*; Saito, Takeshi*; Matsuzaki, Teiichiro*; Sakurai, Hiroyoshi*; Amato, A.*; Asari, Shunsuke*; Biswas, S.*; Chiu, I.-H.; Gianluca, J.*; et al.
Nuclear Instruments and Methods in Physics Research A, 1060, p.169029_1 - 169029_14, 2024/03
Times Cited Count:2 Percentile:46.61(Instruments & Instrumentation)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:2 Percentile:58.81(Physics, Nuclear)no abstracts in English
Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Deng, G.*; et al.
Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01
Times Cited Count:2 Percentile:62.71(Materials Science, Multidisciplinary)Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.
Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12
Times Cited Count:11 Percentile:83.08(Physics, Multidisciplinary)Hu, Q.*; Wang, Q. M.*; Zhang, T.*; Zhao, C.*; Iltaf, K. H.*; Liu, S. Q.*; Fukatsu, Yuta
Energy Reports (Internet), 9, p.3661 - 3682, 2023/12
Times Cited Count:10 Percentile:66.70(Energy & Fuels)Ratliff, H.; McGirl, N. A.*; Beach, M. R.*; Castellanos, L. A.*; Clowdsley, M. S.*; Heilbronn, L. H.*; LaTessa, C.*; Norbury, J. W.*; Rusek, A.*; Sivertz, M.*; et al.
Nuclear Instruments and Methods in Physics Research B, 544, p.165121_1 - 165121_15, 2023/11
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.
Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11
Times Cited Count:21 Percentile:93.59(Physics, Multidisciplinary)The cluster structure of the neutron-rich isotope Be has been probed via the (
) reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-R
pke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the
Be ground-state as a rather compact nuclear molecule.
Lyons, T. P.*; Puebla, J.*; Yamamoto, Kei; Deacon, R. S.*; Hwang, Y.*; Ishibashi, Koji*; Maekawa, Sadamichi*; Otani, Yoshichika*
Physical Review Letters, 131(19), p.196701_1 - 196701_6, 2023/11
Times Cited Count:16 Percentile:90.49(Physics, Multidisciplinary)